其中α粒子是失去电子后带有两个质子的氦-4,当用其攻击含有13个质子的铝原子核时,就生成了15个质子的磷-30,以及一个中子(n)。13 2=15,伴随着看似简单的加法,世界上第一个人工合成的放射性同位素诞生了。 约里奥·居里夫妇也因对人工放射性研究的突出贡献荣获1935年诺贝尔化学奖。
在约里奥·居里夫妇的实验中,α粒子轰击铝箔是在自然条件下发生的,没有人工加速成分。 然而,用α粒子攻击同样带有正电的其他原子核需要克服强大的斥力,如何加速α粒子或者其他带电粒子呢?
恰在1930年代初,美国加州大学伯克利分校的物理学家欧内斯特·劳伦斯发明了回旋加速器。借助回旋加速器,科学家可以赋予粒子更高的能量,将其作为“炮弹”来轰击各种元素的原子核。这对当时蓬勃发展的核物理学来说,无疑是如虎添翼。
05
强强联手
时势造英雄。此时,发现43号元素的一位重要人物就要登场了。他就是意大利的物理学家埃米利奥·塞格雷。
1936年,年轻的塞格雷来到美国伯克利国家实验室访问学习,他很快被欧内斯特·劳伦斯发明的回旋加速器所吸引。回旋加速器中的一些部件在经过粒子轰击后,呈现出放射性。这一现象引起了塞格雷的很大兴趣,于是他向劳伦斯表示希望能得到一些回旋加速器的废弃部件。
1937年1月6号,已经返回意大利巴勒莫大学的他,收到了来自伯克利的一张圣诞贺卡和一些用作回旋加速器偏向板的钼箔。这些钼箔在经受氘核(含有一个质子一个中子的氢同位素)轰击后,呈现出放射性。
或许塞格雷并没有立刻意识到这是一份十分珍贵的圣诞礼物,钼箔被放置了近一个月,直到1月底,他才开始着手分析。 那些寿命很短的放射性同位素经过一个月的时间应该早已衰变殆尽,但这片钼箔的放射性依旧保持着。
塞格雷感觉到这些钼箔的不同寻常,他想到了第43号元素。 但由于本身是物理学家,化学分析并非他的专长,所以他求助于同在巴勒莫大学的矿物学家佩列尔。塞格雷深刻的洞察力与佩列尔精湛的实验技术相结合,最终两人从钼箔上分离出很少量化学特性和铼相似,但同时又具有放射性的未知元素。他们断言,这只可能是第43号元素,来源于氘对钼原子核的轰击。
钼原子核受氘核攻击后,生成第43号元素。
该发现不仅填补了元素周期表长期以来的空缺,而且开启了人类制造未知元素的先河,可谓意义重大。 然而,他们并没有急于宣布“首次发现”,而是先联系了之前宣称发现43号元素的诺达克等人,希望能对比新元素的X-射线光谱。 但诺达克的回复很让人失望:多年前的原图已经丢失了!所以,塞格雷和佩列尔作为第43号元素的真正发现者,实乃当之无愧。
塞德雷和佩列尔 图源:Wikipedia
又到了给新元素命名的时候。回顾之前的几次“发现”—— “日本素”、“马祖里”以及“ 莱茵河”,这些命名无不体现了20世纪初高涨的民族主义思潮对科学界的影响。
这一次,校方希望基于巴勒莫的拉丁文将这种元素取名为“Panormium”。 而在法西斯主义横行的意大利,更有激进分子提议将这种元素命名为“Fascism”, 但塞格雷并没有理睬这些建议。
另一方面,“元素”的本义是最基本的物质组成,所以对于人造出来的物质能否称为“元素”,当时科学界也出现了争议,以致于43号因为错误的发现有了很多假名; 但真正被发现后,却多年没有确定的名称。
第二次世界大战的爆发,极大激发了人们探究人造元素核放射性元素的热情。等到战争结束,人造元素与天然元素在周期表中的同等地位已经被科学界充分认可。
1947年,佩里埃和塞格雷终于被邀请来命名他们已经10岁的“新元素”。 在一篇豆腐块大小的论文中,他们没有选择地名、国名、人名……而是取希腊语“人造”之意,将43号元素正式命名为“Techneitium”,元素符号Tc。