来源:大数据DT
本文约7695字,建议阅读15分钟。
本文通过案例分门别类地深入探讨人工智能的实际应用。案例甚多,此处所列举的仅是九牛一毛。本该按行业或业务对这些案例进行分类,但相反我选择按在行业或业务中最可能应用的顺序来分类。
本文将使用“算法”一词,以高度简化的方式来描述单个算法、模型或者使用多种算法的软件。在每个类别中,逐一讨论数据输入的类型、作为黑箱的算法以及输出(为了简便易行,即使真实算法不是黑箱也暂且把它当成黑箱)。
因为这是高层次的概述,所以我鼓励你深入研究感兴趣的具体应用,搞清楚它们究竟是如何应用于行业或者业务活动的。目前也有很多资源可供使用,以学习所涉及的技术细节和具体算法。
预测分析预测是预测分析或者预测建模的同义词,这是根据有标签,以及有时甚至无标签的输入数据来判断输出数据的过程。在机器学习和人工智能中,预测分析可以进一步细分为回归和分类。
下面将对使用有标签数据(有监督)进行预测的两个子类进行讨论。
1. 回归
图1-1展示了在回归方法中输入有标签数据,经预测模型处理,然后从连续数列中生成数值的过程(例如股市的闭市价)。
▲图1-1:回归
应用包括客户全周期的股票价值和净利润、收入及其增长预测、价格变动、信贷违约风险以及股票交易计算。
2. 分类
分类指的是输入有标签数据,经过分类模型处理后,把输入数据分成一类或多类的过程,如图1-2所示。