在高速公路的入口处建造载重检测支路,当载重卡车驶过动态称重桥时,称重传感器和电子称即自行检查判断,同时给出信号控制交通信号灯。这样我们就能很好的知道车辆有没有超重,从而考虑要不要此车辆通行。这种应用在高速路上的称重传感器要求量程大,精度要求不是特别高,但是长期稳定性必须好,随着传感器和其它电子设备的发展,将会越来越智能化,从而实现无人控制就能阻止超重车辆通过,还能能车辆按重量收费。
接线方法编辑称重传感器的出线方式有4线和6线两种,模块或称重变送器的接线也有4线和6线两种,要接4线还是6线首先要看你的硬件要求是怎样的,原则是:传感器能接6线的不接4线,必须接4线的就要进行短接。
一般的称重传感器都是六线制的,当接成四线制时,电源线(EXC-,EXC )与反馈线(SEN-,SEN )就分别短接了。SEN 和SEN-是补偿线路电阻用的。SEN 和EXC 是通路的,SEN-和EXC-是通路的。
EXC 和EXC-是给称重传感器供电的,但是由于称重模块和传感器之间的线路损耗,实际上传感器接收到的电压会小于供电电压。每个称重传感器都有一个mV/V的特性,它输出的mV信号与接收到的电压密切相关,SENS 和SENS-实际上是称重传感器内的一个高阻抗回路,可以将称重模块实际接收到的电压反馈给称重模块。假设EXC 和EXC-为10V,线路损耗,传感器2mV/V,实际上传感器输出最大信号为()*2=19mV,而不是20mV。此时称重传感器内部就会把19mV作为最大量程,前提是传感器必须通过反馈回路把实际电压反馈给称重模块。在称重传感器上将EXC 与 SENS 短接,EXC-与SENS-短接,仅限于传感器与称重模块距离较近,电压损耗非常小的场合,否则测量存在误差。
在测量过程中,重量加载到称重传感器的弹性体上会引起塑性变形。
电阻应变式称重传感器的工作过程
应变 (正向和负向) 通过安装在弹性体上的应变片转换为电子信号。
仪表应用编辑称重仪表也叫称重显示控制仪表,是将称重传感器信号(或再通过重量变送器)转换为重量数字显示,并可对重量数据进行储存、统计、打印的电子设备,常用于工农业生产中的自动化配料,称重,以提高生产效率。
在工企业中应用的称重仪表性能指标通常用精确度(又称精度)、变差、敏锐度来形貌。仪表工校验仪表通常也是调校精确度,变差和敏锐度三项。
1.变差是指称重仪表被测变量(可明白为输入信号)多次从差异偏向到达同一数值时,仪表指示值之间的最大差值,大概说是仪表在外界条件稳固的环境下,被测参数由小到大变革(正向特性)和被测参数由大到小变革(反向特性)不划一的程度,两者之差即为仪表变差。可靠性 称重控制仪表可靠性是化工企业仪表工所寻求的另一紧张性能指标。可靠性和仪表维护量是相反相成的,仪表可靠性高阐明仪表维护量小,反之仪表可靠性差,仪表维护量就大。对付化工企业检测与进程控制仪表,大部门安置在工艺管道、种种塔、釜、罐、器上.
2.称重仪表在称重传感器中的稳固性 在划定事情条件内,称重仪表某些性能随时间连结稳固的本领称为稳固性(度)。仪表稳固性是化工企业仪表工非常体贴的一天性能指标。由于化工企业利用仪表的环境相比拟力恶劣,被测量的介质温度、压力变革也相比拟力大,在这种环境中投入仪表利用,仪表的某些部件随时间连结稳固的本领会低沉,仪表的稳固性会降落。徇或表征仪表稳固性尚未有定量值,化工企业通常用仪表零漂移来衡量仪表的稳固性。称重仪表稳固性的优劣直接干系到仪表的利用范畴,偶然直接影响化工生产,稳固性不好造成的影响每每双仪表精度降落对化工生产的影响还要大。稳固性不好仪表维护量也大,是仪表工最不盼望出现的事情。
3.称重仪表的 敏锐度偶然也称"放大比",也是仪表静特性贴切线上各点的斜率。增长放大倍数可以提高仪表敏锐度,单纯加大敏锐度并不变化仪表的基天性能,即称重仪表精度并没有提高,相反偶然会出现振荡征象,造成输出不稳固。仪表敏锐度应连结恰当的量。
对于大部分客户来讲,仪表精度虽然是一个紧张指标,但在实际利用中,每每更强调仪表的稳固性和可靠性,因为化工企业检测与进程控制仪表用于计量的为数不多,而大量的是用于检测。别的,利用在进程控制体系中的检测仪表其稳固性、可靠性比精度更为紧张。
随着仪表更新换代,特别是微电子技能引入称重仪表制造行业,使仪表可告性大大提高。仪表生产厂商对这天性能指标也越来越珍视,通常用平均无妨碍时间MTBF来形貌仪表的可靠性。一台全智能称重变送器的MTBF比一样平常非智能仪表如电动Ⅲ变送器要高10倍左右。称重仪表在使用前要与称重传感器配套进行数字标定。标定实际上就是用标准砝码对衡器进行校准。标定后的仪表内部保存有相对于这一组传感器的标定系数。有了这个系数后,仪表才可以把称重传感器的模拟信号转变为重量数字显示。
TJH-2A平行梁传感器
市场前景编辑传感器市场报告显示,2008年全球传感器市场容量为506亿美元,预计2010年全球传感器市场可达600亿美元以上。调查显示,东欧、亚太区和加拿大成为传感器市场增长最快的地区,而美国、德国、日本依旧是传感器市场分布最大的地区。就世界范围而言,传感器市场上增长最快的依旧是汽车市场,占第二位的是过程控制市场,看好通讯市场前景。
一些传感器市场比如压力传感器、温度传感器、流量传感器、水平传感器已表现出成熟市场的特征。流量传感器、压力传感器、温度传感器的市场规模最大,分别占到整个传感器市场的21%、19%和14%。传感器市场的主要增长来自于无线传感器、MEMS(Micro-Electro-MechanicalSystems,微机电系统)传感器、生物传感器等新兴传感器。其中,无线传感器在2007-2010年复合年增长率预计会超过25%。
全球的传感器市场在不断变化的创新之中呈现出快速增长的趋势。有关专家指出,传感器领域的主要技术将在现有基础上予以延伸和提高,各国将竞相加速新一代传感器的开发和产业化,竞争也将日益激烈。新技术的发展将重新定义未来的传感器市场,比如无线传感器、光纤传感器、智能传感器和金属氧化传感器等新型传感器的出现与市场份额的扩大。
选择编辑另外,称重传感器的灵敏度、最大分度数、最小检定分度值等也是传感器选用中必须考虑的指标。
传感器的数量和量程
传感器数量的选择是根据电子衡器的用途、秤体需要支撑的点数(支撑点数应根据秤体几何重心和实际重心重合的原则而确定)而定。一般来说秤体有几个支撑点就选用几只传感器。
传感器的量程选择可依据秤的最大称量值、选用传感器的个数、秤体自重、可产生的最大偏载及动载因素综合评价来决定。下面给出一个经过大量实验验证的经验公式。
公式如下:
C=K0×K1×K2×K3(Wmax W)/N
式中 C一单个传感器的额定量程
W一秤体自重
Wmax一被称物体净重的最大值
N一秤体所采用支撑点的数量
K0一保险系数,一般取1.2~1.3之间
K1一冲击系数
K2一秤体的重心偏移系数
K3一风压系数
使用环境
称重传感器实际上是一种将质量信号转换成可测量的电信号输出装置。用传感器首先要考虑传感器所处的实际工作环境,这点对于正确选用传感器至关重要,它关系到传感器能否正常工作以及它的安全和使用寿命,乃至整个衡器的可靠性和安全性。一般情况下,高温环境对传感器造成涂覆材料融化、焊点开化、弹性体内应力发生结构变化等问题;粉尘、潮湿对传感器造成短路的影响;在腐蚀性较高的环境下会造成传感器弹性体受损或产生短路现象;电磁场对传感器输出会产生干扰。相应的环境因素下我们必须选择对应的称重传感器才能满足必要的称重要求。
准确度等级选择
称重传感器的准确度等级包括传感器的非线性、蠕变、重复性、滞后、灵敏度等技术指标。
应用范围及用途
譬如铝合金悬臂梁传感器适合于电子计价秤、平台秤、案秤等;钢式悬臂梁传感器适用于电子皮带秤、分选秤等;钢质桥式传感器适用于轨道衡、汽车衡等;柱式传感器适用于汽车衡、动态轨道衡、大吨位料斗秤等。称重传感器主要应用在各种电子衡器、工业控制领域、在线控制、安全过载报警、材料试验机等领域。如电子汽车衡、电子台秤、电子叉车、动态轴重秤、电子吊钩秤、电子计价秤、电子钢材秤、电子轨道衡、料斗秤、配料秤、罐装秤等。
应用编辑计重收费是车辆通过设置在收费站收费车道前端的动态称重装置、车辆分离装置、车型识别装置时,数据采集处理装置将采集到的相关信息传送至车道收费计算机,对通行车辆按轴重或总重的超限情况确定适当收费标准的通行费征收方式。该系统应用到称重传感器,由于称重传感器的精准感知使得计重收费变得更加合理。
车辆驶入收费车道,其轮轴依次压过铺设在车道路面中的高精度动态轴重仪、轮轴识别器,控制模块将信号传输至数据采集处理器,经过预设的综合动态数据处理程序,称重数据处理器将计算出每轴轴重、总轴重、总车重、轴型(单轴、联轴)、轮胎类型(单双胎)等信息。安装在路侧的红外线车辆分离变频传感器可准确判别车辆是否完全通过。当车辆完全离开红外线光幕后,称重数据处理器将称重结果、车型判别结果等信息传输到车道收费计算机。车道收费计算机依据计重收费费率对车辆实行计重收费,并将车辆的载重信息和应交纳的金额显示在计重显示屏上。
人们为了从外界获取信息,必须借助于感觉器官,而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中它们的功能就远远不够了,为适应这种情况,就需要传感器,因此可以说,传感器是人类五官的延长,又称之为电五官。
产品缺点编辑缺点一:输出阻抗高,负载能力差
电容式称重传感器的容量受其电极的几何尺寸等限制不易做得很大,一般为几十到几百微法,甚至只有几个微法。因此,电容式称重传感器的输出阻抗高,因而负载能力差,易受外界干扰影响产生不稳定现象,严重时甚至无法工作。必须采取妥善的屏蔽措施,从而给设计和使用带来不便。容抗大还要求传感器绝缘部分的电阻值极高,否则绝缘部分将作为旁路电阻而影响仪器的性能,为此还要特别注意周围的环境如温度、清洁度等。若采用高频供电,可降低电容式称重传感器的输出抗阻,但高频放大、传感器远比低频的复杂,且寄生电容影响大,不易保证工作的稳定性。
缺点二:输出特性非线性
电容式称重传感器的输出特性是非线性的,虽采用差分型来改善,但不可能完全消除。其他类型的电容传感器只有忽略了电场的边缘效应时,输出特性才呈线性。否则边缘效应所产生的附加电容量将于传感器电容器直接叠加,使输出特性非线性。
缺点三:寄生电容影响大
电容式称重传感器的初始电容量小,而连接传感器和电子线路的引线电容、电子线路的杂散电容以及传感器内板极与周围导体构成的电容等所谓寄生电容缺较大,不仅降低了传感器的灵敏度,而且这些电容常常是随机变化的,将使仪器工作很不稳定,影响测量精度。因此对电缆的选择、安装、接法都有严格的要求。例如,采用屏蔽性好、自身分布电容小的高频电线作为引线,引线粗而短,要保证仪器的杂散电容小而稳定等等,否则不能保证高的测量精度。
应该指出,随着材料、工艺、电子技术,特别是集成技术的高速发展,使电容式称重传感器的优点得到发扬而缺点不断在克服。电容传感器正逐渐成为一种高灵敏度、高精度,在动态、低压及一些特殊测量方面大有发展前途的传感器。
五种误差编辑1、特性误差。是由设备本身引起的,包括DC漂移值、斜面的不正确或斜面的非线形。毕竟设备理想的转移功能特性和真实特性之间会存在差距。
2、称重传感器应用误差。也就是由操作而产生的误差,包括探针放置错误、探针与测量地点之间不正确的绝缘、空气或其他气体的净化过程中的错误、变送器的错误放置等多种操作错误引发的误差。
3、动态误差。适用于静态条件的传感器会具有较强的阻尼,因此对输入参数的改变响应较慢,甚至要数秒才能响应温度的阶跃改变。一些具有延迟特性的称重传感器会在对快速改变响应时产生动态误差。响应时间、振幅失真和相位失真都会导致动态误差。
4、插入误差。是由于系统中插入一个传感器时,改变了测量参数而产生的误差。使用了一个对系统过于大的变送器、系统的动态特性过于迟缓、系统中自加热加载了过多的热能等,都会导致插入误差。
5、环境误差。称重传感器使用也会受温度、摆动、震动、海拔、化学物质挥发等环境影响,这些因素都极易引发环境误差。
误差分析编辑1、称重传感器运用差错是操作人员发生的,这也意味着发生的缘由许多,例如,温度不同时发生的差错,包罗探针放置过错或探针与测量地址之间不正确的绝缘,别的一些应用差错包罗空气或其他气体的净化过程中发生的过错,运用差错也触及变送器的过错放置,因而正或负的压力将对正确的读数形成影响。
2、特性差错为设备自身固有的,它是设备的、公认的搬运功用特性和实在特性之间的差,这种差错包罗DC漂移值、斜面的不正确或斜面的非线形。
3、动态差错许多传感器的特性和校准都是适用静态条件下的,这意味着运用的输入参数是静态或类似于静态的,许多传感器具有较强阻尼,因而它们不会对输入参数的改动进行疾速呼应,如,热敏电阻需求数秒才干呼应温度的阶跃改动。
4、热敏电阻不会当即跳跃至新的阻抗,或发生骤变,相反,它是慢慢地改动为新的值,然后,若是具有推迟特性的称重传感器对温度的疾速改动进行呼应,输出的波形将失真,由于其间包含了动态差错。发生动态差错的要素有呼应工夫、振幅失真和相位失真。
5、插入差错是当体系中刺进一个传感器时,由于改动了测量参数而发生的差错,普通是在进行电子丈量时会呈现这样的问题,但是在其他方法的测量中也会呈现类似问题,例如一个伏特计在回路中测量电压,它肯定会有一个固有阻抗,比回路阻抗要大许多,或许呈现回路负荷,这时,读数就会有很大的差错,这种类型的差错发生的缘由是运用了一个对体系(如,压力体系)而言过于大的变送器;或许是体系的动态特性过于缓慢,或许是体系中自加热加载了过多的热能。
6、环境差错来源于传感器运用的环境,称重传感器要素包罗温度,或是摇摆、轰动、海拔、化学物质蒸发或其他要素,这些常常影响传感器的特性,所以在实践运用中,这些要素总是被分类会集在一起的。
工作原理编辑负荷传感器是称重传感器、测力传感器的统称,用单项参数评价它的计量特性。
电阻应变式称重传感器主要由弹性元件、电阻应变片、测量电路和传输电缆4部分组成。电阻应变片贴在弹性元件上,弹性元件受力变形时,其上的应变片随之变形,并导致电阻改变。测量电路测出应变片电阻的变化并变换为与外力大小成比例的电信号输出。电信号经处理后以数字形式显示出被测物的质量。电阻应变式称重传感器的称量范围为几十克至数百吨,计量准确度达1/1000~1/10000,结构较简单,可靠性较好。大部分电子衡器都使用这种传感器。电阻应变式称重传感器是基于这样一个原理:弹性体弹性元件,敏感梁在外力作用下产生弹性变形,使粘贴在他表面的电阻应变片转换元件也随同产生变形,电阻应变片变形后,它的阻值将发生变化增大或减小,再经相应的测量电路把这一电阻变化转换为电信号电压或电流,从而完成了将外力变换为电信号的过程。在测量过程中,重量加载到称重传感器的弹性体上会引起塑性变形。电阻应变式称重传感器的工作过程应变正向和负向通过安装在弹性体上的应变片转换为电子信号。最简单的弯曲梁称重传感器只有一个应变片。通常,弹性体和应变片通过多种方式来结合,类似外壳密封部件等来保护应变片。
称重传感器在选用时要考虑到很多因素,实际的使用当中我们主要从下列几个因素考虑。称重传感器的量程根据你的用途,称重传感器的量程选择可依据秤的最大称量值、选用传感器的个数、秤体自重、可产生的最大偏载及动载因素综合评价来决定。一般来讲,传感器的量程越接近分配到每个传感器的载荷,其称量的准确度就越高。但是在实际的使用当中,由于加在传感器上的载荷除被称物体外,还存在秤体自重、皮重、偏载及振动冲击等载荷,因此选用传感器时,要考虑诸多方面的因素,保证传感器的安全和寿命。其次称重传感器的准确度等级包括传感器的非线性、蠕变、重复性、滞后、灵敏度等技术指标。在选用的时候不应该盲目追求高等级的传感器,应该考虑电子衡的准确度等级和成本。一般情况下,选用传感器的总精度为非线性、不重复性和滞后三项指标的之和的均方根值略高于秤的精度。称重传感器形式的选择主要取决于称重的类型和安装空间,保证安装合适,称重安全可靠;另一方面要考虑厂家的建议。对于传感器制造厂家来讲,它一般规定了传感器的受力情况、性能指标、安装形式、结构形式、弹性体的材质等。
称重传感器基本知识
1、什么是称重传感器?
称重传感器是用来将重量信号或压力信号转换成电量信号的转换装置。
2、称重传感器的测量原理是什么?
称重传感器采用金属电阻应变片组成测量桥路,利用金属电阻丝在张力作用下伸长变细,电阻增加的原理,即金属电阻随所受应变而变化的效应而制成的(应变,就是尺寸的变化)。
3、称重传感器的构造原理?
金属电阻具有阻碍电流流动的性质,即具有电阻(Ω),其阻值依金属的种类而异。同一种金属丝,一般来讲,越是细长,其电阻值就越大。当金属电阻丝受外力作用而伸缩时,其电阻值就会在某一范围内增减。因此,将金属丝(或膜)紧贴在被测物体上,而且这种丝或膜又很细或很薄,粘贴又十分完善,那麽,当被测物体受外力而伸缩时,金属电阻丝(膜)也会按比例伸缩,其阻值也会相应变化。称重传感器就是将金属电阻应变片粘贴在金属称重梁上进行测量重量信号的。
4、称重传感器的外形构造与测重形式?
称重传感器的外形构造随被测对象的不同,其外形构造也会不同。
A、比较常见的称重传感器的外形构造:
圆柱形(杯柱形);S形;长方形等。
B、测重形式:
压缩式;伸张式。
圆柱形(杯柱形)一般均为压缩式测重形式。
S形,长方形均为压缩式,伸张式两用测重形式。
C、内部金属称重梁形式:
一般分为单孔或双孔形式。
D、鹤林公司使用的称重传感器的外形构造与测重形式:
圆柱形——称重仓(压缩式),原料粉煤灰秤(压缩式)。
S形——皮带秤(压缩式),包装机袋重秤(伸张式)。
长方形——汽车衡(压缩式),轨道衡(压缩式),煤粉天平秤(伸张式),固体流量计(压缩式)。
5、称重传感器的电路组成?
称重传感器进行测量时,我们需要知道的是应变片受应变时的电阻变化。通常总是采用应变片组成桥式电路(惠斯登电桥),将应变片引起的电阻变化转换成电压变化来进行测量的。
设:电桥的输入激励电压为Ei, ①
则电桥的输出电压△E0为:
R1 R2
△E0=Ei×[(R1R3-R2R4)/(R1 R2)(R3 R4)]
输入激励电压 ③ 输出电压
令电桥的初始条件为
R1=R2=R3=R4, ④
则△E0=0。
设电阻值R1的应变片受应变作用 R3 R4
后的电阻变化为R △R,则电桥的输 ②
出电压△E0为:
△E0=Ei[△R/(4R 2△R)]≌(△R/4R)Ei (R>>△R)
由于△R=R×K0×ε,所以
△E0=(Ei×K0×ε)/4
例如,设K0=2,ε=1000×0.000001, Ei=1V
则: △E0=(1×2×1000×0.000001)/4=0.5mV
式中 K0=系数(一般为2)
ε=应变系数(一般为500×0.000001~2000×0.000001;相当于10~40Kgf/mm2。)
Ei=输入的激励电压
为了增加电桥的视在输出,大多都将电桥设计成4枚应变片都受力作用的形式(4个工作片)。
此时 △E0=0.5mV×4=2 mV
6、传感器的输出灵敏度的表示方法?
电桥的输出电压通常用输入激励电压为1V时的输出电压(mV/V)来表示。通常称传感器的输出灵敏度。
7、为什么传感器内部要加补偿电路?
称重传感器在制造过程中,为了改善它的性能,特别是改善温度特性,一般要在应变片电路中附加对零点和灵敏度的温度补偿。即除了应变片外,其中还增加了各种补偿电阻。
零点补偿的目的是尽量减小电桥零点随温度的变化,因此,出应变片本身的温度自补偿外,又加入了电阻温度系数和电桥中应变片的温度系数不同的电阻元件(如铜电阻或镍电阻等),以加强补偿作用。
灵敏度补偿的目的是减小输出电压随温度的变化,即补偿弹性体的弹性系数和应变片的灵敏度系数随温度的变化。因此,对电桥中串接了两个与电桥温度补偿作用相同的电阻。同时电路中的其它电阻用于将电桥的初始平衡,额定输出和输入电阻等参数调整到规定的数值。
8、称重传感器的参数指标(中英文对照)
Model: STC-100Kg (型号规格)
Cap: 100Kg (量程范围)
Date: 2005/01/14 (生产日期)
S/N: X02274 (出厂编号)
FSO: 2.9981 mV/V (灵敏度)
Recommended Excitation: 10V AC/DC (推荐激励电压)
Maximum Excitation: 15V AC/DC (最大激励电压)
Output at Rated Load: 2.9981 mV/V (额定负荷输出)
Non Linearity: <0.020% (非线性)
Hysteresis: <0.020% (滞后)
Creep(30 minutes): 0.029% (30分钟蠕动)
Non Repeatability: <0.01% (非重复性)
Zero Retum(30 minutes): 0.030% (30分钟零点漂移)
Temp. Effect/℃ on Span: <0.0015% (温度变化1℃对量程的影响)
Temp. Effect/℃ on Zero: <0.0026% (温度变化1℃对零点的影响)
Compensated Temp.Range: -10 to 40℃ (温度补偿范围)
Operating Temp.Range: -20 to 60℃ (工作温度范围)
Zero Balance: ±1% (零点平衡)
Input Resistance: 380±5Ω (输入阻抗)
Output Resistance: 350±3Ω (输出阻抗)
Insulation Resistance(50VDC): >5000MΩ (绝缘电阻)
Deflecion at Rated Load: Nil (零) (额定负荷下的倾斜度)
Safe Overload: 150% (允许超载)
Ultimate Overload: 300% (最终超载)
9、称重传感器引线功能的具体判断方法
由于不同生产厂家的传感器引线的颜色不同,所以不能以具体颜色来判断引线功能。