
1.sin平方x的积分= 1/2x -1/4 sin2x + C(C为常数)。(得出结论)
2.解:∫(sinx)^2dx
=(1/2)∫(1-cos2x)dx
=(1/2)x-(1/4)sin2x+C(C为常数)(原因解释)
3.分部积分:
(uv)'=u'v+uv'
得:u'v=(uv)'-uv'
两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx(内容延伸)

1.sin平方x的积分= 1/2x -1/4 sin2x + C(C为常数)。(得出结论)
2.解:∫(sinx)^2dx
=(1/2)∫(1-cos2x)dx
=(1/2)x-(1/4)sin2x+C(C为常数)(原因解释)
3.分部积分:
(uv)'=u'v+uv'
得:u'v=(uv)'-uv'
两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx(内容延伸)
Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.