n边形的内角和是(n-2)×180°。
n边形内角和公式的推导过程是这样的:
以三角形内角和为基础,三角形的内角和等于180°,然后我们把n边形转化成三角形的形式,也就是切割出来一个一个的三角形,有几个三角形就有几个180°。
而三角形能切割出来几个,取决于从一个顶点能有几条对角线,对角线的个数减一(有点类似于植树问题)就是三角形个数,因为n边形一个顶点能引申出来(n-3)条对角线,所以会有n-2个三角形。所以n边形内角和公式就是(n-2)×180°。
N边形的内角和就是这个N边形的n个内角相加得到的和。
在初中阶段的数学学习中,我们学习过N边形的内角和定理:N边形的内角和是(N-2)×180度。一个N边形,当我们知道它的边数的时候,就可以求出这个N边形的内角和是多少度。反过来我们知道N边形的内角和也可以求出这个N边形的边数。