二阶导数表示函数高阶变化速度,既然你理解二阶导数,也应该理解二阶微分,他是在自变量有微小变化时导致函数值发生的变化中由二阶导数部分产生的变化值(导数是变化率,微分是变化的值)
对于一元函数来说,如果在该方程中出现因变量的二阶导数,我们就称为二阶(常)微分方程,其一般形式为F(x,y,y',y'')=0。在有些情况下,可以通过适当的变量代换,把二阶微分方程化成一阶微分方程来求解。
二阶导数是一阶导数的导数。从原理上看,它表示一阶导数的变化率;从图形上看,它反映的是函数图像的凹凸性。
二阶导数表示函数高阶变化速度,既然你理解二阶导数,也应该理解二阶微分,他是在自变量有微小变化时导致函数值发生的变化中由二阶导数部分产生的变化值(导数是变化率,微分是变化的值)
对于一元函数来说,如果在该方程中出现因变量的二阶导数,我们就称为二阶(常)微分方程,其一般形式为F(x,y,y',y'')=0。在有些情况下,可以通过适当的变量代换,把二阶微分方程化成一阶微分方程来求解。
二阶导数是一阶导数的导数。从原理上看,它表示一阶导数的变化率;从图形上看,它反映的是函数图像的凹凸性。
Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.