具体证明步骤如下:
证明二元函数的可微性即证明二元函数可微的一个充分条件:
若z=f(x,y)在点M(x,y)的某一邻域内存在偏导数f、f,且它们在点M处连续,则z=f(x,y)在点M可微。
证明:由于偏导数在点M(x,y)连续,0<θ,θ<1,α=0,
△z=f(x+△x,y+△y)-f(x,y)
=[f(x+△x,y+△y)-f(x,y+△y)]+[f(x,y+△y)-f(x+y)]
=f(x+θ△x,y+△y)△x+f(x,y+θ△y)△y
=[f(x,y)+α]△x+[f(x,y)+β]△y
=f(x,y)△x+f(x,y)△y+α△x+β△y
而||≤|α|+|β|,
所以△z=f(x,y)△x-f(x,y)△y+o(ρ),即f(x,y)在点M可微。
注意:定理4的逆定理不成立。即:偏导数存在且连续是可微的充分非必要条件。
例如:f(x,y)=(x+y)sin (x+y≠0)0 (x+y=0),
因为f(0,0)===0,同理:f(0,0)=0,所以f(x,y)在(0,0)点的偏导数存在。
又f(x,y)=2xsin+(x+y)cos(x+y≠0)0 (x+y=0)
所以f(x,y)=(2xsin-cos),
其中2xsin=0,
而 cos中,若取路径y=x,
显然cos=cos不存在,所以f(x,y)不存在。
因此f(x,y)在点(0,0)处偏导数存在但不连续。
而 = (△x+△y)sin=0,所以f(x,y)在(0,0)点可微。