如果:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”.)或A′A=E,则n阶实矩阵A称为正交矩阵,若A为单位正交阵,则满足以下条件:1)A是正交矩阵。
判断是正交矩阵的方法:
一般就是用定义来验证,若AA' = I,则A为正交矩阵,也就是验证每一行(或列)向量的模是否为1
任意两行(或列)的内积是否为0。
如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵。
例如举一个最简单的例子矩阵A: 0 1 1 0 A的转置: 0 1 1 0此时 AA^T=E, 故A本身是正交矩阵由于AA^(-1)=E 由逆矩阵定义 若AB=E 则B为A的逆矩阵 可以知道 A^(-1)为A的逆矩阵,也就是说正交矩阵本身必然是可逆矩阵即若A是正交矩阵则A的n个行(列)向量是n维向量空间的一组标准正交基