上述结论能否推广使用呢?即如果一个电阻是另一个电阻的3倍、4倍,,n倍。
例如,128电阻分别与48、38、28、18电阻并联(它们的倍数分别是3、4、6和12倍),等效电阻如何计算?
不难看出:当一电阻为另一电阻的n倍时,等效电阻的计算通式为
三、电阻的混联
在实际电路中,单纯的电阻串联或并联是不多见的,更常见的是既有串联,又有并联,即电阻的混联电路。
对于混联电路等效电阻计算,分别可从以下两种情况考虑。
1.电阻之间联接关系比较容易确定
求解方法是:先局部,后整体,即先确定局部电阻串联、并联关系,根据串、并联等效电阻计算公式,分别求出局部等效电阻,然后逐步将电路化简,最后求出总等效电阻。
例如图3所示电路,从a、b两端看进去,R1与R2并联,R3与R4并联,前者等效电阻与后者等效电阻串联,R5的两端处于同一点(b点)而被短接,计算时不须考虑,所以,等效电阻:
值得注意的是:等效电阻的计算与对应端点有关,也就是说不同的两点看进去,等效电阻往往是不一样的,因为对应点不同,电阻之间的联接关系可能不同。
例如图3,若从a、c两点看进去,R1与R2并联,R3与R4就不是并联,而是串联(但此时R3 R4被短接),这样,等效电阻为:
Rac=R1MR2
同理,从b、c看进去,R1与R2串联(被短接),R3与R4并联,等效电阻:
Rbc=R3MR4
2.电阻之间联接关系不太容易确定
例如图4所示,各电阻的串、并联关系不是很清晰,对初学者来说,直接求解比较困难。所以,可将原始电路进行改画,使之成为电阻联接关系比较明显的电路,然后再进行计算。
具体方法步骤如下:
(1)找出电路各节点,并对其进行命名,如图5所示。