定积分求弧长计算公式,定积分求弧长三种公式

首页 > 时尚 > 作者:YD1662025-06-22 04:40:30

定积分求弧长计算公式,定积分求弧长三种公式(1)

怎么用定积分求求弧长?

(一).设曲线C的参数方程是:x=φ(t),y=ψ(t);那么有起点A(t₁)到终点B(t₂)的弧长S:S=[t₁,t₂]∫√[(dx/dt)²+(dy/dt)²]dt

(二)若曲线C的方程为y=f(x),曲线弧的端点A和B对应的自变量x的值为a与b,那么A⌒B的弧长S:S=[a,b]∫√[1+(dy/dx)²]dx。这就是积分求弧长的表达式,其中ds要根据题目条件来求,但基本上都是(dx^2+dy^2)^1/2变化而来的,空间曲线的弧长类似推广即可

ds^2= dx^2 + dy^2

ds= 根号下(dx^2+dy^2)

根据这个公式,可以退导其他的式子.

把dx^2从根号提出来,就是∫ds =∫ 根号下[1+(dy/dx)^2]*dx

同理,∫ds =∫ 根号下[1+(dx/dy)^2]*dy

如果是参数函数,对于t[a,b]

∫ds = ∫(上限b,下限a)根号下 [(dx/dt)^2 + (dy/dt)^2]*dt

如果是极函数,(polar function)

∫ds = ∫(上限b,下限a)根号下 [r^2 + (dr/dO)^2]*dr

(O是角度theta,区间是〔a,b〕)这道题推导有点麻烦,得把x=cosr,y=sinr之类的都得带进去求导,就不说了.

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.