y=sinx对称轴为x=k∏+ ∏/2 (k为整数),对称中心为(k∏,0)(k为整数)。
y=cosx对称轴为x=k∏(k为整数),对称中心为(k∏+ ∏/2,0)(k为整数)。
y=tanx对称中心为(k∏,0)(k为整数),无对称轴。
对于正弦型函数y=Asin(ωx+Φ),令ωx+Φ = k∏+ ∏/2 解出x即可求出对称轴,令ωx+Φ = k∏ 解出的x就是对称中心的横坐标,纵坐标为0。(若函数是y=Asin(ωx+Φ)+ k 的形式,那此处的纵坐标为k )
余弦型,正切型函数类似。
以f(x)=sin(2x-π/6)为例
令2x-π/6=Kπ
解得x=kπ/2+π/12
那么函数的对称中心就是(kπ/2+π/12,0)