【规律方法】
1.解决有关不等关系的实际问题,应抓住关键字词,例如“要”“必须”“不少于”“大于”等,从而建立相应的方程或不等式模型.
2.利用不等式性质可以求某些代数式的取值范围,但应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围.解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求解范围.
【反思与感悟】
1.比较法是不等式性质证明的理论依据,是不等式证明的主要方法之一,比较法之一作差法的主要步骤为作差——变形——判断正负.
2.判断不等式是否成立,主要有利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简单.
【易错防范】
1.运用不等式的性质解决问题时,注意不等式性质成立的条件以及等价转化的思想,比如减法可以转化为加法,除法可以转化为乘法等.但应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围.
2.形如例3-2探究2题型的解决途径:先建立所求范围的整体与已知范围的整体的等量关系,再通过“一次性”不等关系的运算求解范围.