编辑导语:由于疫情,许多企业的发展都受到了影响,从而导致很多企业提出了降本增效的口号。但是想实现降本增效,不是只靠一条数据两条公式那么一计算就可以的,那么究竟该如何有效的降本增效呢?本文从数据分析的角度进行了系统的讲解。让我们一起来看看吧!
今年环境不好,很多企业都提出了降本增效的口号。可作为数据分析,该如何实现降本增效?今天系统讲解下。
一、降本增效的错误姿势1. 错误1:前台增效,后台降本
有些人一提“降本增效”,本能的反应就是:
- 增效是前台的事,销售、营销多赚钱
- 降本是后台的事,研发、生产、供应多降本
听起来非常合理!
可真这么干了,很快就会发现:“成本竟是我自己!”裁员、停产就是后台最快的降本办法。可后台再裁员停产,也抵不过前台随意打折,降价促销让出去的成本。结果就是“前台乱花钱,后台没支撑”,严重的直接把公司折腾没了。
2. 错误2:全员营销
有些人一提“增效”,就开始喊“狼性!全员营销!ALL iN!”然后开始逼着员工去推销。结果不然遭人反感,而且非专业的销售一没渠道二没资源,他能卖动就见鬼了。也没啥产出。
3. 错误3:全员省钱
有些人一提“降本”,就开始拉出“全员思考如何在低毛利下生存”的打横幅,员工福利也不发、出差打车要在小票背后写起点终点——还一张张算钱。结果就是拿不出爆款产品,有本事的人都离职,最后越做越low。
二、问题症结在哪里以上种种乱象,本质在于:抓错重点。就像学渣听学霸的故事,只记住了学霸通宵学习一样。学霸之所以成为学霸,不是因为丫通宵,而是丫至少有一套成功方法。不去学方法,大眼瞪小眼熬通宵是没屁用的。
对企业也是,要知道,真正的增效,在于:
真正的降本,要砍的是:
以上三点任一点,都是灾难级的问题,会引发前期投入浪费、库存增加、资金周转慢等一系列次生灾害。相比之下,出差费、住宿、员工福利算个毛线。
因此,破局的关键在于:对产品、渠道、用户的成本进行清晰的核算,对运营过程进行及时的把控,避免烂到不可收拾。这就需要做精细化的数据分析。
三、用户分析怎么做1 .支持降本的分析
- 新用户的转化率分析,剔除劣质渠道
- 老用户的复购率分析,避免用户流失
- 促销敏感型用户识别,减少被薅羊毛
其中1可以和渠道分析合并来做。这里重点讲解一下第3点。薅羊毛有显性和隐形两种,显性的经常是营销规则不合理导致的,比如滥发无门槛代金券、同一用户多次叠加优惠、白金卡优惠力度过大导致用户凑单等等,这些在项目开始前,就可以主动识别。
在活动开始后,作为数据分析师,要主动监控异常订单,当订单出现:
- 单笔过高、过低金额
- 同一用户反复下单,下单总量过大
- 商品实际成交价低于标价比例过大
可以直接做订单拦截,先抓住典型问题,再查源头,能有效避免风险。
2. 数据分析
隐形的羊毛更难受。比如很多公司做促销活动,总喜欢搞“全场大促”,心理感觉可以多覆盖用户,可实际上参与的都是同一批人。结果经常是有活动的产品销量大涨,没活动的一蹶不振,总业绩也不见涨。
这时候,数据分析可以:
- 对用户分层,区分高中低用户
- 对活动打标签,区分各个目的活动
- 交叉观察用户参与活动情况,识别每个活动参与人群
- 关注频繁参与活动用户群,建议砍掉其中边缘活动
- 关注从未被覆盖的用户群,分析用户潜在需求
这样既能避免隐形薅羊毛,又能找到潜在机会点,把营销资源用到地方。
3. 增效分析
- 为利润款商品/搭配款商品找潜在用户,直接拉升商品销量。
- 分析用户互动习惯,为私域/社群/APP找高粘性用户,降低渠道成本。
- 识别高价值用户,直接推高档商品,拉升用户消费金额。
这里需要用到用户画像,价值分层,关联推荐等分析手段,不一一列举了。
四、商品分析怎么做支持降本的分析:
- 上市阶段:识别劣品,及时止损
- 热销阶段:控制促销,多赚现金
- 衰退阶段:尽早清货,减少损失
这里虽然写了三条,但是核心是第一条。商品质量的判断是核心,越早发现问题商品,越能早进行区域调配,不同渠道的调配,及时止损。拖得越久,积压带来的损失越大,后期清货得越花本钱。
商品分析和用户分析不同,需要看商品从上市开始,全生命周期数据。并且商品上市经常伴随推广活动,因此核算成本,不应只核算每个阶段的商品成交价/商品生产成本,得拿到商品推广计划表,把广告成本,活动成本等全部都算上,这样才能还原商品的真实利润,从而支持决策判断。