世界上矛盾无处不在,矛盾的正反两方面相互依赖、相互排斥共同存在于事物的变化过程中。与此相似,正反运算也同时存在于代数式和等式的等量和等效变换中。
小学的加减乘除的四则运算法则,实现了数式和代数式的等量变换、移项合并化简实现了等式和不等式的同解与等效变换,这都源于正反运算和四则运算法则。
有加就有减,有乘就有除。说明小学四年级的方程的移项原理为正运算变为反运算。
如原函数中的自变量与函数值一一对应,则必有反函数,反函数是由原函数的逆映射产生的。
求反函数的方法为将X表示Y等价变换成Y表示X,再实行X 与Y互换即可得到。由于实现了X 与Y的互换,所以原函数与反函数的图像关于Y=X直线对称,原函数的定义域为反函数的值域。
求原函数的反函数应用广泛。在求反函数的导数、求复合函数的导数、求反函数的概率密度函数等方面都有重要的应用。