数学中是何意思,数学中的集合是什么意思

首页 > 上门服务 > 作者:YD1662023-11-19 08:17:48

由该表可知,由于 1 × 1 ≡ 1, 2 × 2 ≡ 1,所以 1 的逆元为 1, 2 的逆元为 2。也就是说,0 以外的数都有逆元,所以 {0, 1, 2} 构成了域。

4. 用 mod 4 进行分类则无法构成有限域

接下来让我们用 (mod 4) 进行分类。剩余类共包含 0,1,2,3 这四类。

数学中是何意思,数学中的集合是什么意思(9)

根据上表可知,此时 2 · 2 ≡ 0,所以 2 没有逆元。

也就是说,因为非 0 的 2 没有逆元,所以不能构成域。

5. 用 mod 5 进行分类时的有限域

下面让我们来试试用 (mod 5) 进行分类。由于剩余类包含 0, 1,2,3,4,所以加法和乘法表如下。

数学中是何意思,数学中的集合是什么意思(10)

根据乘法表可知,

数学中是何意思,数学中的集合是什么意思(11)

由此可知,除 0 以外的其他“数”都有逆元。

6. 若 p 为素数,则剩余类为有限域

至此,我们可以推测出当 n 为素数时,(mod n) 的剩余类能构成个数为 n 的有限域。

事实的确如此。

我们知道,当 p 为素数且用 (mod p) 进行分类时,费马小定理是成立的。

也就是说,对于非 0 的 a 而言,以下同余式恒成立。

数学中是何意思,数学中的集合是什么意思(12)

上一页12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.