除了定量的指标外,还可以从费力度的角度来去衡量具体的任务完成的体验。费力度属于用户研究视角的范畴,大家自行搜索了解,在此无需过多赘述。
评分方面,任务完成时间、任务完成率的实践的假设在于正态分布。基于大量用户的任务完成的定量数据,我们可以把每项任务的完成率、任务完成时间可以得出下面的两个数值:
登录的每日任务完成率为E1、每日任务完成时间T1上一个统计周期内,登录日任务完成率均值E1mean、标准差Si
因此,E1min= E1mean-2Si、E1max= E1mean 2Si
基于这两个数值,可以根据下述的规则:
若E1<=E1min,则E1=0;若E1>=E1max,则E1=100,若E1min<E1<E1max,则E1= (E1-E1min)/(E1max-E1min)*100
进一步得出每次、每天的该任务的评分。同理,可得到其他任务的得分。
费力度的实践假设是李克特量表(这块也是市场调研领域的统计范畴,在此也不赘述),基于李克特量表的赋分转换方法可以得出登录这个任务的费力度评分。同理也可以得出其他任务的费力度评分。
最后,权重设计板块,权重设计在实践过程中,同样也有很多方法,比如:优序图法、层次分析法等等。接下来重点阐述下层次分析法的应用。
层次分析法,简称AHP,是匹茨堡大学教授萨蒂于20世纪70年代初提出的一种方法,该方法是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。
针对效率体验的话,基于AHP可以构建对应的分析模型如下:
基于该模型后,可以邀请一些专家进行重要性的评分。
通过需要进行一致性检验,需将CI和随机一致性指标RI进行比较,得出检验系数CR,公式如下:
一般,如果CR<0.1 ,则认为该判断矩阵通过一致性检验。
然后就可以得出:任务完成率、任务完成时间、费力度的权重=(0.387,0.327,0.286)
同时,也可以得到具体的子指标的权重。涉及数据敏感,在此不再赘述。
到这一步,我们基本上就把指标设计-分值-权重的框架确定结束。
最后的最后,再啰嗦几句关键点:
- 权重不可以直接套用。俗话说,家家有本难念的经,每个公司的发展阶段不一样,每个业务单元的目标都不太一样,所以权重自然会有所侧重点。不建议直接奉承“拿来主义”;
- 指标和权重设计需要“渐近明细”。随着体验指标体系的设计、反馈、优化的循环落地,整体框架会越来越清晰。所以前期的看不清楚并没有大碍,坚持住先推推看。
本文由@铠泽 原创发布于人人都是产品经理,未经作者许可,禁止转载。
题图来自Unsplash,基于CC0协议。
该文观点仅代表作者本人,人人都是产品经理平台仅提供信息存储空间服务。
,