哈勃结构和设备简图
但哈勃所有收集到的光线统统汇聚到一个巴掌大小的图像感应器上,这个传感器是黑白组件:
哈勃ACS WFC CCD图像传感器
对光谱的分析你肯定感到好奇,为什么如此先进的空间望远镜不用彩色相机而用黑白图像传感器,难道是当时造不出好的彩色传感器吗?
并非如此。事实上,对于天文观测来说,黑白图像比彩色更好用。我们接下来为你分析哈勃的工作原理。
与我们普罗大众不同,天文学家、天体物理学家和天体化学家们希望揭示遥远天体的运行规律、它们的元素组成以及化学成分、寻找氧气、水、有机化合物甚至外星生命存在的依据。科学家们掌握的一个有力工具就是光谱。
原子中的电子只能以一定的能级存在。当电子从原子能级的一个梯级下降到另一梯级时,会发射出一个光子,其能量与电子能量的变化相匹配。不同的元素在其能量阶梯上的不同位置具有横档,它反映出来的就是这种元素的光谱。
光谱反应元素的能量阶梯
由于每一层电子在不同的能级上会发出不同波长的光,因此不同元素会有各自特定的光谱,我们通过对光谱线的分析就可以知道发光的是哪一种元素。比如太空中最常见的碳、氧、氮和铁元素,它们所发出的光谱就各不相同。
碳氧氮铁的发射光谱各不相同
与之相对应,每一种元素也有它的吸收光谱,比如当恒星的光从一团富含氢元素的云团中穿过时,其中一部分光会被氢吸收,科学家通过分析接收到的光谱信号,就可以判断某个位置有大量的氢。