5.AARRR模型
AARRR模型是探索用户增长的模型。分别对应用户生命周期的5个环节:用户获取、用户激活、用户留存、用户变现、推荐传播。
6.关联规则分析
关联规则分析其实就是购物篮分析,就是通过挖掘用户的消费行为数据,探索用户的消费习惯,从而合理搭配商品,提升收益。
举个简单的例子,近30天共产生了10笔订单(方便计算只虚构了10笔),1代表订单中包含该商品,0代表订单中未包含商品,比如111112订单,用户没有买苹果,但买了香蕉(是否买了其他商品不考虑)。
其中购买了苹果的订单有6笔,购买了香蕉的有5笔,同时购买了苹果和香蕉的有3笔。
则:
① 苹果和香蕉组合的支持度
=同时购买了苹果和香蕉的订单数/总订单数*100%
=3/10*100%
=30%
含义:同时购买苹果和香蕉的概率有多大
② 苹果对香蕉的置信度
=同时购买了苹果和香蕉的订单数/购买了苹果的订单数*100%
=3/6*100%
=50%
含义:购买了苹果的用户有多大概率会再买香蕉
③ 苹果对香蕉的提升度
=苹果对香蕉的置信度/购买香蕉的概率
=50%/(5/10)
=1
含义:购买苹果对购买香蕉会产生正向影响还是负向影响还是无影响
此案例中计算的提升度是1,表示购买苹果并不会对购买香蕉产生任何影响。
详细解释下:
若提升度=1:表示购买苹果并不会对购买香蕉产生任何影响,因为在购买了苹果的条件下去买香蕉的概率和直接买香蕉的概率是一样的;
若提升度>1:表示购买苹果对购买香蕉产生了正向影响,即购买苹果很大可能也会买香蕉,因为在购买了苹果的条件下去买香蕉的概率大于直接买香蕉的概率;
若提升度<1:表示购买苹果对购买香蕉产生了负向影响,即购买苹果很大可能就不会买香蕉,因为在购买了苹果的条件下去买香蕉的概率小于直接买香蕉的概率;
这就是关联规则分析,一般用以研究探索商品捆绑销售,比如苹果是否需要和香蕉在一起捆绑销售,捆绑销售收益是否会更大。
数据分析图谱分享转载/溜溜笔记说