数据分析一般的套路是什么,七种常见的数据分析方法

首页 > 实用技巧 > 作者:YD1662023-05-08 00:08:37

需要注意的是,漏斗分析的每个下游节点数据范围都需与上游节点统一,如签约的40个客户必须在上游的50个意向客户中,否则转化率的数据含义会失真。

3.3 杜邦分析

杜邦分析是最常用的分析方法之一,通过问题的层层拆解、分析,确定每一层次的表现情况,帮助最终分析出问题的主要矛盾。

最常见的就是电商的利润模型,可见下图,在按公式、结构的拆解后,可以清晰的定位到【利润】变化的主要原因和次要原因:

数据分析一般的套路是什么,七种常见的数据分析方法(5)

3.4 分层分析

结构化分析的常用方法,即通过对分析目标分层、比较不同群体之间的差异,从而分析、总结出相关结论。

分层分析的方法,核心在于【分层】,即围绕分析目标、设计出科学的分层方案。比如“二八法则”,就可以简单粗暴的判断出“高价值用户”,这也是应用广泛的分层方法。

常用的分层方法有RFM、COHORT、ABC分层等:

RFM:电商常用的分层方法,是通过最近消费时间、消费频次和消费价值来确定用户价值分层,核心是找出不同忠诚度和价值的用户群,从而进行分层分析和运营。

COHORT:留存分析的常用方法,通过对比同一时期、渠道的新用户,在后续留存、目标转化情况,找到产品或渠道的优化迭代方向。

ABC分层:常用于供应链的库存管理,即通过销售重要度、销售稳定性和库转维度,对在库商品进行分层,分析不同层级的核心问题、给出解决方案,将极大提高库存精细化管理的效率效能。

3.5 交叉分析

相信很多同学都有过这样的经历,某个指标发生了异常波动,然后被领导夺命连环问。有木有好的方法?交叉分析来帮忙!

交叉分析的核心是【穷举】,即根据业务经验、穷举可能导致波动的维度和指标,进行交叉分析。

比如某公司广告收入突然下降,我们可以按照下表的方式,去穷举可能影响的维度、指标,通过观察具体数据,确定主要原因。

数据分析一般的套路是什么,七种常见的数据分析方法(6)

以上给大家介绍了基本的数据分析思路和方法,其实针对不同的业务场景、业务问题,数据分析的方法还有很多,后续会再跟大家系统介绍。

4

小结

最后再给大家划下重点,数据分析的基础三步走:

看到这里,也许大家还是会有些困惑,分析方法有那么多,遇到具体的问题时,又该如何快速、高效的选择合适的分析方法呢?期待我们的后续文章吧!

其实数据分析思维不仅是门核心的业务技能,也可以在很多生活场景中发挥作用,比如……脱单!

数据分析一般的套路是什么,七种常见的数据分析方法(7)

是不是很神奇?感兴趣的同学请随手点个关注,下期将更新数据分析框架实战——《数据分析,竟是脱单神器!》。

作者简介

九条,网易严选资深数据分析师,数据分析长期学习及实践者,先后负责严选供应链计划分析、流量分析、商品分析等工作,致力挖掘与传播分析价值。

,
上一页12末页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.