上面的列表中,播放量最大的作品的点赞率、(点赞 评论)率最高,(点赞 评论)率第二的作品的播放量却不是第二。点赞和评论会影响作品的播放量,但不是简单的影响关系。
除了监控播放量,还监控了不同时间范围内,点击作品的人的“身份”。监控逻辑:通过作品收到的赞和评论,反向查看这些人的主页,(平台不提供“谁看了我的作品”的功能)。
由此发现,在作品发出的初期,点赞/评论的人基本都是关注自己的人,当作品的播放量超过粉丝量七八倍,近一万时,陆续收到了来自“同城”的人的关注,当作品浏览量近2万开始,陆续收到来自“发现”的人加关注。
点击自己主页中的粉丝数,即可查看到自己的粉丝列表,粉丝列表中会显示该粉丝的来源,如下:
从上面监控“人”开始,直观的感受体验就是:大多数作品停留在“关注”,表现好的作品会获得“同城”的流量,表现极好的作品能够进入“发现”。但因为这个结论是通过反向查看“点赞、评论、关注”等的行为数据反推出来,结论本身也受到这些数据的影响。
上面是发作品的一些感受。在网上看到知乎市场产品总监闫泽华闫老师的演讲,他讲到内容平台的流动模型,可以帮助理解平台的传播机制。讲一下我的理解,模型的主体流程如下:
内容理解→冷启动→用户反馈→扩散or消亡→长尾
- 内容理解:程序会理解用户发出的作品(通过识别作品的标题描述、视频内容等),对作品打上标签加以分类。
- 冷启动:程序理解了作品之后会主动推给可能喜欢它的用户。这里牵涉出另外一个问题,就是程序本身对自己的用户也做了标签归类。新用户发出作品后,即使没有粉丝,也会推给一部分人。我自己的经历中,能直接监测到的第一波看作品的人是自己的粉丝,但作为一个新用户,即使没有粉丝,也会获得流量。
- 用户反馈:作品推给用户后,平台会收集用户的反馈,包括阅读、点赞、收藏、分享、评论等等。
- 扩散or消亡:算法根据收到的反馈做出选择:进行下一步的扩散,还是就此消亡。
- 长尾:在长尾的传播中,会考虑到内容的时效性和周期性。“像娱乐内容其实很容易被用户遗忘,推一波也就完了;美食攻略、旅游攻略类型的内容则会被周期性推送”。
上面的模型是一个宏观模型,对于一些环节有以下几点想法:
用户反馈:作品发出后,平台可以收集到的反馈指标包括:打开率、点赞数、评论数、转发数、完播率、关注率等(指通过看作品而关注作者的比率)。
这些指标再加上时间这个维度,构成一个计算“作品表现”的模型。模型最终得分的高低被作为下一波流量分发的基准。
这五个指标中,“完播率”比较有意思,“关注率”很硬。快手讲究“老铁”,平台中活跃着那么一波人,只要自己的好友发出作品,他们都会去点一圈或评论一圈666,但是他们并没有耐心把这个作品全部看完。
“关注”是对人的认可,点赞和评论等是对作品的认可,关注行为的门槛更高,认为“关注率”很硬。前面4.8W播放量的作品,点赞:评论:关注=3216:105:120。
扩散or消亡:画了一下演化模型。作品在一次次冲关之后,所得到的用户反馈逐渐接近它的真实水平,就像电商平台的好评率,销量越高,所得到的的好评率相对越准。
在自己的作品播放量不好的情况下,有时候可能会有“是金子没有被发现”的想法,平台提供了推广服务,我购买过两次,做过推广之后,一个作品的终值播放量停留在2200,另外一个作品的终值播放量停留在7107。
得出的结论是:平台算法很有效,如果作品自由传播没有得到好的播放量,那么购买推广服务也没有意义。推广服务所给的投放量,毕竟是非常非常有限的,产品要想传播的好,必须可以自发动。
本文由 @vivi 原创发布于人人都是产品经理,未经作者许可,禁止转载。
题图来自Unsplash,基于CC0协议。
,