二、MQ-2的工作原理
MQ-2型烟雾传感器属于二氧化锡半导体气敏材料,属于表面离子式N型半导体。处于200~300摄氏度时,二氧化锡吸附空气中的氧,形成氧的负离子吸附,使半导体中的电子密度减少,从而使其电阻值增加。当与烟雾接触时,如果晶粒间界处的势垒收到烟雾的调至而变化,就会引起表面导电率的变化。利用这一点就可以获得这种烟雾存在的信息,烟雾的浓度越大,导电率越大,输出电阻越低,则输出的模拟信号就越大。
/** \file max30102.cpp ******************************************************
*
* Project: MAXREFDES117#
* Filename: max30102.cpp
* Description: This module is an embedded controller driver for the MAX30102
*
* Revision History:
*\n 1-18-2016 Rev 01.00 GL Initial release.
*\n
*/
#include "max30102.h"
#include "myiic.h"
#define max30102_WR_address 0xAE
bool maxim_max30102_write_reg(uint8_t uch_addr, uint8_t uch_data)
/**
* \brief Write a value to a MAX30102 register
* \par Details
* This function writes a value to a MAX30102 register
*
* \param[in] uch_addr - register address
* \param[in] uch_data - register data
*
* \retval true on success
*/
{
/* 第1步:发起I2C总线启动信号 */
i2c_Start();
/* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
i2c_SendByte(max30102_WR_address | I2C_WR); /* 此处是写指令 */
/* 第3步:发送ACK */
if (i2c_WaitAck() != 0)
{
goto cmd_fail; /* EEPROM器件无应答 */
}
/* 第4步:发送字节地址 */
i2c_SendByte(uch_addr);
if (i2c_WaitAck() != 0)
{
goto cmd_fail; /* EEPROM器件无应答 */
}
/* 第5步:开始写入数据 */
i2c_SendByte(uch_data);
/* 第6步:发送ACK */
if (i2c_WaitAck() != 0)
{
goto cmd_fail; /* EEPROM器件无应答 */
}
/* 发送I2C总线停止信号 */
i2c_Stop();
return true; /* 执行成功 */
cmd_fail: /* 命令执行失败后,切记发送停止信号,避免影响I2C总线上其他设备 */
/* 发送I2C总线停止信号 */
i2c_Stop();
return false;
}
bool maxim_max30102_read_reg(uint8_t uch_addr, uint8_t *puch_data)
/**
* \brief Read a MAX30102 register
* \par Details
* This function reads a MAX30102 register
*
* \param[in] uch_addr - register address
* \param[out] puch_data - pointer that stores the register data
*
* \retval true on success
*/
{
/* 第1步:发起I2C总线启动信号 */
i2c_Start();
/* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
i2c_SendByte(max30102_WR_address | I2C_WR); /* 此处是写指令 */
/* 第3步:发送ACK */
if (i2c_WaitAck() != 0)
{
goto cmd_fail; /* EEPROM器件无应答 */
}
/* 第4步:发送字节地址, */
i2c_SendByte((uint8_t)uch_addr);
if (i2c_WaitAck() != 0)
{
goto cmd_fail; /* EEPROM器件无应答 */
}
/* 第6步:重新启动I2C总线。下面开始读取数据 */
i2c_Start();
/* 第7步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
i2c_SendByte(max30102_WR_address | I2C_RD); /* 此处是读指令 */
/* 第8步:发送ACK */
if (i2c_WaitAck() != 0)
{
goto cmd_fail; /* EEPROM器件无应答 */
}
/* 第9步:读取数据 */
{
*puch_data = i2c_ReadByte(); /* 读1个字节 */
i2c_NAck(); /* 最后1个字节读完后,CPU产生NACK信号(驱动SDA = 1) */
}
/* 发送I2C总线停止信号 */
i2c_Stop();
return true; /* 执行成功 返回data值 */
cmd_fail: /* 命令执行失败后,切记发送停止信号,避免影响I2C总线上其他设备 */
/* 发送I2C总线停止信号 */
i2c_Stop();
return false;
}
bool maxim_max30102_init(void)
/**
* \brief Initialize the MAX30102
* \par Details
* This function initializes the MAX30102
*
* \param None
*
* \retval true on success
*/
{
if(!maxim_max30102_write_reg(REG_INTR_ENABLE_1, 0xc0)) // INTR setting
return false;
if(!maxim_max30102_write_reg(REG_INTR_ENABLE_2, 0x00))
return false;
if(!maxim_max30102_write_reg(REG_FIFO_WR_PTR, 0x00)) //FIFO_WR_PTR[4:0]
return false;
if(!maxim_max30102_write_reg(REG_OVF_COUNTER, 0x00)) //OVF_COUNTER[4:0]
return false;
if(!maxim_max30102_write_reg(REG_FIFO_RD_PTR, 0x00)) //FIFO_RD_PTR[4:0]
return false;
if(!maxim_max30102_write_reg(REG_FIFO_CONFIG, 0x6f)) //sample avg = 8, fifo rollover=false, fifo almost full = 17
return false;
if(!maxim_max30102_write_reg(REG_MODE_CONFIG, 0x03)) //0x02 for Red only, 0x03 for SpO2 mode 0x07 multimode LED
return false;
if(!maxim_max30102_write_reg(REG_SPO2_CONFIG, 0x2F)) // SPO2_ADC range = 4096nA, SPO2 sample rate (400 Hz), LED pulseWidth (411uS)
return false;
if(!maxim_max30102_write_reg(REG_LED1_PA, 0x17)) //Choose value for ~ 4.5mA for LED1
return false;
if(!maxim_max30102_write_reg(REG_LED2_PA, 0x17)) // Choose value for ~ 4.5mA for LED2
return false;
if(!maxim_max30102_write_reg(REG_PILOT_PA, 0x7f)) // Choose value for ~ 25mA for Pilot LED
return false;
return true;
}
bool maxim_max30102_read_fifo(uint32_t *pun_red_led, uint32_t *pun_ir_led)
/**
* \brief Read a set of samples from the MAX30102 FIFO register
* \par Details
* This function reads a set of samples from the MAX30102 FIFO register
*
* \param[out] *pun_red_led - pointer that stores the red LED reading data
* \param[out] *pun_ir_led - pointer that stores the IR LED reading data
*
* \retval true on success
*/
{
uint32_t un_temp;
uint8_t uch_temp;
*pun_ir_led = 0;
*pun_red_led = 0;
maxim_max30102_read_reg(REG_INTR_STATUS_1, &uch_temp);
maxim_max30102_read_reg(REG_INTR_STATUS_2, &uch_temp);
/* 第1步:发起I2C总线启动信号 */
i2c_Start();
/* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
i2c_SendByte(max30102_WR_address | I2C_WR); /* 此处是写指令 */
/* 第3步:发送ACK */
if (i2c_WaitAck() != 0)
{
printf("read fifo failed");
goto cmd_fail; /* EEPROM器件无应答 */
}
/* 第4步:发送字节地址, */
i2c_SendByte((uint8_t)REG_FIFO_DATA);
if (i2c_WaitAck() != 0)
{
goto cmd_fail; /* EEPROM器件无应答 */
}
/* 第6步:重新启动I2C总线。下面开始读取数据 */
i2c_Start();
/* 第7步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
i2c_SendByte(max30102_WR_address | I2C_RD); /* 此处是读指令 */
/* 第8步:发送ACK */
if (i2c_WaitAck() != 0)
{
goto cmd_fail; /* EEPROM器件无应答 */
}
un_temp = i2c_ReadByte();
i2c_Ack();
un_temp <<= 16;
*pun_red_led = un_temp;
un_temp = i2c_ReadByte();
i2c_Ack();
un_temp <<= 8;
*pun_red_led = un_temp;
un_temp = i2c_ReadByte();
i2c_Ack();
*pun_red_led = un_temp;
un_temp = i2c_ReadByte();
i2c_Ack();
un_temp <<= 16;
*pun_ir_led = un_temp;
un_temp = i2c_ReadByte();
i2c_Ack();
un_temp <<= 8;
*pun_ir_led = un_temp;
un_temp = i2c_ReadByte();
i2c_Ack();
*pun_ir_led = un_temp;
*pun_red_led &= 0x03FFFF; //Mask MSB [23:18]
*pun_ir_led &= 0x03FFFF; //Mask MSB [23:18]
/* 发送I2C总线停止信号 */
i2c_Stop();
return true;
cmd_fail: /* 命令执行失败后,切记发送停止信号,避免影响I2C总线上其他设备 */
/* 发送I2C总线停止信号 */
i2c_Stop();
return false;
}
bool maxim_max30102_reset()
/**
* \brief Reset the MAX30102
* \par Details
* This function resets the MAX30102
*
* \param None
*
* \retval true on success
*/
{
if(!maxim_max30102_write_reg(REG_MODE_CONFIG, 0x40))
return false;
else
return true;
}
//DHT11温湿度传感器部分
#include "reg52.h"
#include "LCD1602.h"
#include "intrins.h"
//typedef unsigned char uchar;
//typedef unsigned int uint;
//定义变量
sbit Data=P3^6;
uchar rec_dat[13];//用于保存接收到的数据组
void DHT11_delay_us(uchar n)
{
while(--n);
}
void DHT11_delay_ms(uint z)
{
uint i,j;
for(i=z;i>0;i--)
for(j=110;j>0;j--);
}
void DHT11_start()
{
Data=1;
DHT11_delay_us(2);
Data=0;
DHT11_delay_ms(20); //延时18ms以上
Data=1;
DHT11_delay_us(30);
}
uchar DHT11_rec_byte() //接收一个字节
{
uchar i,dat=0;
for(i=0;i<8;i ) //从高到低依次接收8位数据
{
while(!Data); //等待50us低电平过去
DHT11_delay_us(8); //延时60us,如果还为高则数据为1,否则为0
dat<<=1; //移位使正确接收8位数据,数据为0时直接移位
if(Data==1) //数据为1时,使dat加1来接收数据1
dat =1;
while(Data); //等待数据线拉低
}
return dat;
}
void DHT11_receive() //接收40位的数据
{
uchar R_H,R_L,T_H,T_L,RH,RL,TH,TL,revise;
DHT11_start();
if(Data==0)
{
while(Data==0); //等待拉高
DHT11_delay_us(40); //拉高后延时80us
R_H=DHT11_rec_byte(); //接收湿度高八位
R_L=DHT11_rec_byte(); //接收湿度低八位
T_H=DHT11_rec_byte(); //接收温度高八位
T_L=DHT11_rec_byte(); //接收温度低八位
revise=DHT11_rec_byte(); //接收校正位
DHT11_delay_us(25); //结束
if((R_H R_L T_H T_L)==revise) //校正
{
RH=R_H;
RL=R_L;
TH=T_H;
TL=T_L;
}
/*数据处理,方便显示*/
rec_dat[0]=RH/10 '0';
rec_dat[1]=(RH) '0';
rec_dat[2]='%';
rec_dat[3]='R';
rec_dat[4]='H';
rec_dat[5]=' ';
rec_dat[6]=' ';
rec_dat[7]=(TH/10) '0';
rec_dat[8]=(TH) '0';
rec_dat[9]='^';
rec_dat[10]='C';
}
}
void main()
{
//使用lcd1602显示数据
DHT11_receive();
lcd1602(rec_dat);
}
// MQ-2烟雾传感器
unsigned char GetYanWuValue(void)
{
unsigned int sum=0;
unsigned char m,value=0;
for(m=0;m<20;m ) //读50次AD值
sum = adc0832(0) sum; //读到的AD值,将读到的数据累加到sum
value=(unsigned char)(sum/20); //跳出上面的for循环后,将累加的总数除以50得到平均值value
if(value > ADC_Zero)
value = value - ADC_Zero; //首先减去零点漂移
else
value = 0;
return value;
}
完整代码可进群免费领取。
嵌入式物联网的学习之路非常漫长,不少人因为学习路线不对或者学习内容不够专业而错失高薪offer。不过别担心,我为大家整理了一份150多G的学习资源,基本上涵盖了嵌入式物联网学习的所有内容。点击下方链接,0元领取学习资源,让你的学习之路更加顺畅!记得点赞、关注、收藏、转发哦!
点击这里找小助理0元领取: