一米机器人联网之后怎么使用,一米智能机器人连接wifi

首页 > 实用技巧 > 作者:YD1662023-10-30 18:14:35

图 | 室内试验(来源:受访者)

研究中,一个虚拟版本的 Cassie,通过与环境交互产生的大量数据,来学习稳定的步态。

习得的步态控制器,被转移到名为 SimMechanics 的第二个仿真环境中进行验证,该环境有更高的准确性,可用以模拟现实世界的物理过程,但是会减慢仿真运行速度。

而通过使用在仿真环境中学习的步态控制器,Cassie 能非常平稳地行走,且无需进行任何额外微调。它不仅能像人类一样前后左右地走,还能蹲着走,也能承受意料之外的负载,更能从强行推动造成的失稳状态中恢复过来。

比如,在测试期间,Cassie 损坏了它右腿的两个电机,但它仍能调整其步行策略、并进行适应。

机器人如何更鲁棒?答案是强化学习

Cassie 是李钟毓所在的 Hybrid Robotics Group 实验室、从美国 Agility Robotics 公司买来的,它大概有一米多高,内部拥有十个电机,以及二十个自由度。

一米机器人联网之后怎么使用,一米智能机器人连接wifi(5)

图 | 实验中的 Cassie(来源:受访者)

据他介绍,Cassie 于 2017 年首次开始出售,他从 2019 年开始接触,目前已经研究两年有余。

买来后,其主要用于测试和验证不同算法,如控制算法和导航控制算法等。在李钟毓这里,Cassie 更像是一个研究平台。

事实上,足式机器人的核心正是控制算法。研究中,李钟毓主要使用 Python 进行编程,主体代码由其所在小组搭建,剩余一部分基于其他学者的开源代码。

由于是二足机器人,算法控制上会更难。而该研究的创新点在于,用强化学习的方法,得到控制二足机器人步态的算法,相比传统基于模型的算法,性能可得到显著提升。

一米机器人联网之后怎么使用,一米智能机器人连接wifi(6)

图 | 鲁棒性测试(来源:受访者)

由此带来的鲁棒性也比较强,怎么推它都不会倒,即便在几乎快要摔倒的情况下,也能快速恢复稳定状态,这也是业内首次展示出二足机器人如此稳定的性能。

在强化学习之前,传统基于模型的方法,需要很多时间和技巧给机器人做建模,尤其对于二足机器人而言,一旦其自身性质和周围环境发生改变,比如电机坏了、地面摩擦力有变化,模型很有可能就会失效。

其次,对于双足式的机器人系统,其非线性非常高,并且由于是高自由度的混合系统,每一次踏步都会受到地面冲击力,因此很难获得精确模型。

一米机器人联网之后怎么使用,一米智能机器人连接wifi(7)

图 | 室外实验(来源:受访者)

而要想做一个实时控制算法,就要使用相对完整的动力学模型。但是,即便具备好的模型,部署在非常高自由度的非线性系统上,也很难做到较快的实时计算。

因此,使用传统方法时,很多学者都会做出权衡取舍,比如往往用简化模型来做控制算法。

这样做出的算法有两个缺点:一是无法完整利用动力学模型,无法充分发挥机器人系统的灵敏性;二是基于模型的算法,一旦超过其稳定区域,算法就会轻易崩溃。

而强化学习的优点在于,通过相对完整的机器人动力系统,Cassie 在仿真环境反复尝试后,就能获得大量和环境交互的数据,从而学会用稳定步态行走。

一米机器人联网之后怎么使用,一米智能机器人连接wifi(8)

上一页1234下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.