其中第一项是形状和纹理的平均值,而 si、ti 则是 Si、Ti 减去各自平均值后的协方差矩阵的特征向量,它们对应的特征值按照大小进行降序排列。
等式右边仍然是 m 项,但是累加项降了一维,减少了一项。si、ti 都是线性无关的,取其前几个分量可以对原始样本做很好地近似,因此能够大大减少需要估计的参数数目,并不损失准确率。
基于 3DMM 的方法都是在求解这几个系数,随后的很多模型在这个基础上添加了表情、光照等系数,但是原理与之类似。
参考链接:
https://zhuanlan.zhihu.com/p/101330861
https://my.oschina.net/u/4304462/blog/4557678
https://cloud.tencent.com/developer/article/1419949
https://blog.csdn.net/u011681952/article/details/82623328
https://huailiang.github.io/blog/2020/face/
https://yongqi.blog.csdn.net/article/details/107679240
https://blog.csdn.net/u011681952/article/details/82623328