jovi物联是个啥,jovi物联怎么控制家电

首页 > 实用技巧 > 作者:YD1662024-02-14 16:13:47

最终训练出来的结果:观察到电脑开大,马上闪现然后反身开大,一气呵成(图中方框为图像识别对象框)

根据“vivo AI Lab”官方公布的成果,经过这一系列神经网络训练出来的模型,1V1模式下能以100%的胜率击败游戏中的内置AI,同时能够在5V5模式下以AI战队的形式表现出较好的协同性能。

NO.02

除了游戏AI,vivo还“做”了更多

在实验全新深度学习模型的同时,“vivo AI Lab”还更具挑战性地选择了一条更难的路径——不使用游戏的API接口,而是选择直接从图像监测并获取游戏中的各种特征数据。

之前不少公司和机构都曾在电子游戏上发起人工智能挑战,基本都采用了游戏的API接口。人工智能无需经过图像分析等手段就可以直接获知游戏中各个单位、环境的数据。

jovi物联是个啥,jovi物联怎么控制家电(5)

“AlphaStar”获取的游戏数据,明显非常简洁

以游戏表现上最出色的DeepMind的“AlphaStar”为例,它并没有直接从图像中获取单位的信息,而是从游戏引擎里面读取特征信息,这些图像直接标记了哪里是兵或者工厂。

jovi物联是个啥,jovi物联怎么控制家电(6)

“vivo AILab”专门为采集游戏数据所打造的一套深度学习网络

“vivo AI Lab”则选择了用另外一套深度学习网络来捕捉《王者荣耀》中5个英雄的特征,具体的来说,就是把5个英雄对应的大地图和小地图数据,通过卷积神经网络提取信息,结合多目标检测提取的特征向量,再输入到上文所提到的分层神经网络当中。然后各个英雄根据自身状态环境,决策出不同的动作,实现在各自情况下的对应操作。

jovi物联是个啥,jovi物联怎么控制家电(7)

虽然这个过程不起眼,但实际上却可能对人工智能的表现起到很大影响。毕竟实际用户都是通过手机显示的图像来获取信息的,假如人工智能都从API接口来获取信息,你又怎么能保证这些信息的层级和精准度都是跟人类从图像中获取的一致?

之所以vivo这次额外花力气填补这一流程,正是想让人工智能能够完整模拟人类从看到屏幕上图像,到实际操作的全过程,让人工智能的运转环境条件更接近普通用户。

jovi物联是个啥,jovi物联怎么控制家电(8)

上一页123下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.