iclr知识图谱,如何学好iclr

首页 > 影视动漫 > 作者:YD1662023-05-11 00:35:34

iclr知识图谱,如何学好iclr(1)

雷锋网 AI 科技评论:ICLR 2020 正在进行,但总结笔记却相继出炉。我们曾对 ICLR 2020 上的图机器学习趋势进行介绍,本文考虑的主题为知识图谱。

作者做波恩大学2018级博士生 Michael Galkin,研究方向为知识图和对话人工智能。在AAAI 2020 举办之际,他也曾对发表在AAAI 2020上知识图谱相关的文章做了全方位的分析,具体可见「知识图谱@AAAI2020」。

iclr知识图谱,如何学好iclr(2)

本文从五个角度,分别介绍了 ICLR 2020上知识图谱相关的 14 篇论文。五个角度分别为:

1)在复杂QA中利用知识图谱进行神经推理(Neural Reasoning for Complex QA with KGs)

2)知识图谱增强的语言模型(KG-augmented Language Models)

3)知识图谱嵌入:循序推理和归纳推理(KG Embeddings: Temporal and Inductive Inference)

4)用GNN做实体匹配(Entity Matching with GNNs)

5)角色扮演游戏中的知识图谱(Bonus: KGs in Text RPGs!)

话不多说,我们来看具体内容。

注:文中涉及论文,可关注「AI科技评论」微信公众号,并后台回复「知识图谱@ICLR2020」打包下载。

一、在复杂QA中利用知识图谱进行神经推理

今年ICLR2020中,在复杂QA和推理任务中看到越来越多的研究和数据集,very good。去年我们只看到一系列关于multi-hop阅读理解数据集的工作,而今年则有大量论文致力于研究语义合成性(compositionality)和逻辑复杂性(logical complexity)——在这些方面,知识图谱能够帮上大忙。

1、Measuring Compositional Generalization: A Comprehensive Method on Realistic Data

文章链接:https://openreview.net/pdf?id=SygcCnNKwr

Keysers等人研究了如何测量QA模型的成分泛化,即训练和测试 split 对同一组实体(广泛地来讲,逻辑原子)进行操作,但是这些原子的成分不同。作者设计了一个新的大型KGQA数据集 CFQ(组合式 Freebase 问题),其中包含约240k 个问题和35K SPARQL查询模式。

iclr知识图谱,如何学好iclr(3)

Intuition behind the construction process of CFQ. Source: Google blog

这里比较有意思的观点包括:1)用EL Description Logic 来注释问题(在2005年前后,DL的意思是Description Logic,而不是Deep Learning );2)由于数据集指向语义解析,因此所有问题都链接到了Freebase ID(URI),因此您无需插入自己喜欢的实体链接系统(例如ElasticSearch)。于是模型就可以更专注于推断关系及其组成;3)问题可以具有多个级别的复杂性(主要对应于基本图模式的大小和SPARQL查询的过滤器)。

作者将LSTM和Transformers基线应用到该任务,发现它们都没有遵循通用标准(并相应地建立训练/验证/测试拆分):准确性低于20%!对于KGQA爱好者来说,这是一个巨大的挑战,因此我们需要新的想法。

2、Scalable Neural Methods for Reasoning With a Symbolic Knowledge Base

文章链接:https://openreview.net/pdf?id=BJlguT4YPr

Cohen等人延续了神经查询语言(Neural Query Language,NQL)和可微分知识库议程的研究,并提出了一种在大规模知识库中进行神经推理的方法。

作者引入了Reified KB。其中事实以稀疏矩阵(例如COO格式)表示,方式则是对事实进行编码需要六个整数和三个浮点数(比典型的200浮点KG嵌入要少得多)。然后,作者在适用于多跳推理的邻域上定义矩阵运算。

这种有效的表示方式允许将巨大的KG直接存储在GPU内存中,例如,包含1300万实体和4300万事实(facts)的WebQuestionsSP 的 Freebase转储,可以放到三个12-Gb 的 GPU中。而且,在进行QA时可以对整个图谱进行推理,而不是生成候选对象(通常这是外部不可微操作)。

作者在文章中对ReifiedKB进行了一些KGQA任务以及链接预测任务的评估。与这些任务当前的SOTA方法相比,它的执行效果非常好。

事实上,这项工作作为一个案例,也说明SOTA不应该成为一篇论文是否被接收的衡量标准,否则我们就错失了这些新的概念和方法。

3、Differentiable Reasoning over a Virtual Knowledge Base

文章链接:https://openreview.net/pdf?id=SJxstlHFPH

Dhingra等人的工作在概念矿建上与上面Cohen等人的工作类似。他们提出了DrKIT,这是一种能用于在索引文本知识库上进行差分推理的方法。

iclr知识图谱,如何学好iclr(4)

首页 1234下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.