对于有理数,下面易错知识点或题型需要牢记
第一、有关“0”的题型:0是非常特殊一个数字,在数的发展历史当中,很多文明都有关于0的初始概念。0是非常古怪的一个数字,即非正数也非负数,它是一个虚无的正数和负数的分界,其实你想想一楼和负一楼的分界点就能理解0作为分界的概念。所以,有人说有它是来自虚无的真实。有关0的历史,大家可以查阅资料:来看易错题:
分析:(1)倒数等于本身的数,如果在小学,我们只知道1,但按照倒数定义:乘积为1的两个数互为倒数,因此应该是1和-1.需要注意的时,有些同学会把0写上,可能忘了,0不能做除数(分母)。
(2)绝对值等于本身的数都会想到正数和0,但绝对值等于相反数的数有些同学会把0忽略掉,因此,这里m,n都可能取0.其大小关系是:m大于等于n
(3)加一个否定词,会忽略掉0.答案是正数和0
(4)加上0共7个
(5)按有效数字定义:3,4,0,0共4个;科学记数法的精确位数必需还原后看4后面的0,因此精确到百位。
第二、用字母的符号来判断其正负:一个字母的正负要看它的具体含义,不能简单的用其左边符号判断。比如-m可能是正数,也可能是负数或0.看易错题型:
分析:(1)n在原点左侧,因此n是负数,其到原点距离应试-n;-m在原点右侧,因此-m是正数,也就是m是负数,所以-m到原点距离是-m.
(2)互为相反数两数关于原点对称,可在数轴画出-n,m,再有数轴比大小,如下图左到右即从小到大。
第三、数轴动点计算忽略多种情况:在数轴上一个点到某个特定点距离确定时,点是可以在左右两侧的。