电影《不要抬头》(2021)剧照。
和与我们亲缘关系最近的猿类相比,人类的基因同质性异常地高。这是人类大扩张之前在早期历史上曾遇到基因瓶颈的体现——远古人类曾经数次濒临灭绝。人类最终的灭绝将由几个因素共同导致:早期历史造成的基因多样性不足,今天栖息地损失造成的灭绝债务,人类行为和环境改变造成的生育不足,以及小规模孤立人群所面临的一些特殊问题。
不论怎样,冰川前进和消退的循环还将继续重复许多次。人类造成的二氧化碳增加会延迟下一次冰川前进的日期,但是当冰期最终来临时会来得更加突然。气候变化将导致极地冰盖上崩解出大量的冰山,同时向海洋(特别是向北大西洋)中注入大量的淡水,从而堵塞墨西哥湾暖流。欧洲和北美洲将在不到一代人的时间里全面进入冰期。但那时已不会再有人类记录寒冷的天气。在狂热的人类活动所产生的二氧化碳被吸收之前,人类自身就会灭绝。残余的温室效应将暂时让地球保持温暖,但冰期的到来将更猛烈而突兀,并开启冰期和温暖期的交替循环,直到超额的二氧化碳完全被吸收,无法再影响新生代大冰期的自然进程为止。
纪录片《地球》(2007)剧照。
大约3000万年以后,南极洲将向北漂移到纬度较低的地方,温暖的热带海水将把冰盖的痕迹完全冲刷干净。随之而来的将是一个持久的寒冷期,这对于生命意味着什么?体形比獾大的所有陆生动物都将灭绝。大型有蹄类包括象、犀牛、狮、虎、长颈鹿和熊都将不复存在。绝大部分有袋类也将灭绝。可以溯源到三叠纪的卵生哺乳类——鸭嘴兽和食蚁兽——也将终结。灵长类最后一个物种——智人——此时早已消失了。
将会有几种小型鸟类幸存下来,还有不少蜥蜴和蛇。龟、鳄等更大的爬行动物和所有两栖动物都将灭绝。啮齿动物将大量幸存,但也许我们将很难认出它们。小鼠和大鼠的后裔中将出现许多食草动物。传统的食肉目将只有一些类似猫鼬或雪貂的小型动物幸存下来,而大型食肉动物也将来自啮齿类。当然,最可怕的掠食者将由不会飞的巨型蝙蝠演化而来。
海洋中还是会有鱼类。历史可以追溯到泥盆纪的鲨鱼仍将在海里游弋。新的珊瑚或海绵物种将继续形成礁石。鲸类仍将继续存在一段时间。
4
为何二氧化碳会变得如此稀缺和珍贵?
用最宏观的尺度来看,地球生命的故事热闹非凡,各种角色来来往往,但是归根结底,是两个因素控制着整台大戏。第一个因素是逐渐减少的大气中的二氧化碳含量,第二个因素是逐渐增强的太阳亮度。
绝大多数生命赖以为生的是植物通过光合作用把大气中的二氧化碳转化为生命物质的能力。为了进行光合作用,植物通常需要大约150ppm的二氧化碳浓度。这对应的是植物通过C3途径固定二氧化碳制造糖类。而另一种途径称为C4途径,它所需要的二氧化碳浓度要低得多,只有10ppm。C4途径的缺点在于植物需要更多能量来驱动它,因此在大多数情况下植物倾向于使用C3途径。
几百万年前,随着草的出现,事情发生了变化。草倾向于使用更浪费能量但更能充分利用二氧化碳的C4途径,在热带草原上尤其如此。总体上看,虽然偶有高峰和低谷,在地球历史上二氧化碳浓度一直是在持续降低的。在新生代中期,二氧化碳终于低到了一定程度,以至于自然选择更有利于那种一向少见的光合作用形式,即使它耗费的能量更多。
电影《不要抬头》(2021)剧照。
回顾更久远的历史,我们可以看到,这不过是生命对地球环境改变的又一次回应。生命曾面临许多类似挑战,历次挑战背后大多有太阳辐射热量持续升高和二氧化碳含量在宏观上持续降低这两个因素。
为何二氧化碳会变得如此稀缺和珍贵?原因可以用一个词概括——风化。山脉从地面上隆起所新形成的岩石很快就会被侵蚀风化。在这一过程中,大气中的二氧化碳会被吸收。最终,受侵蚀的岩石会粉碎成尘土,流向大海,并在海底被掩埋起来。
地球在它历史的最初阶段几乎完全被海洋覆盖,没有多少陆地可供侵蚀。但随着时间的推移,陆地的比例持续增加,风化作用的潜能也越来越高。和火山喷发等补充大气中的二氧化碳的作用相比,风化作用从大气中清除二氧化碳的速率一直在稳定而缓慢地提高。
生命第一次面临的挑战是距今24亿年至21亿年之间的大氧化事件。当时,地壳运动突然加速,导致大量碳元素被掩埋。空气中的二氧化碳被清除,温室效应下降,全世界进入了持续3亿年的冰期,从北极到南极整个地球表面都被冰层覆盖。这是若干“雪球地球”事件中的第一次,也是规模最大的一次。当时太阳产生的热量也没有今天那么多,这加剧了气候变化的严重性,也影响了地球生命未来的进程。
生命应对危机的方式是增加复杂性。彼此之间原本只有松散联系的细菌把资源汇聚在一起,各自只专注于生命活动的一个方面。这是亚当·斯密在《国富论》中所论述的“劳动分工”的经典案例。在工厂里,如果每个工人都专注做一项工序,而不是让每个人独立完成整个生产过程,那么总体生产效率会高得多。
同样地,新出现的真核细胞内部存在着分工合作。真核细胞可以消耗更少的资源而做更多的事。
5
今天的生物正在为进一步的复杂化做准备
生命的下一次重大挑战是发生在大约8.25亿年前的罗迪尼亚超大陆解体事件。和上次一样,这次事件也导致了大规模的风化和碳埋藏,以及另一个漫长的冰期。这次冰期也引发了“雪球地球”事件,但是它的持续时间不如大氧化事件所造成的那次冰期长。虽然这一次有更多的陆地可供侵蚀,但太阳已经变热了很多,所以冰期更早地结束了。
在这一时期,出现了更复杂的真核生物。不同的真核细胞聚集在一起,组成多细胞有机体,其中每一个细胞专注于各自的任务,如消化、繁殖或防御。动物的出现是罗迪尼亚超大陆解体后的那次冰期所带来的直接后果之一。
生命又一次通过彻底*内部“经济学”来应对剧烈的环境变化。多细胞生物可以长得更大,移动得更快更远,并获取更多资源。这是单细胞真核生物永远赶不上的。
真核生物并不是看着日历来到了距今8.25亿年的时刻然后一致同意成为多细胞生物的。在此之前多细胞生物早已出现了。在那个时刻之后,单细胞真核生物和细菌仍然极其普遍,同时多细胞状态变得更加常见了,而不再是一种少有的例外情况。10亿年前,我们只能在一片淤泥的海洋中偶然发现叶状体的海藻;而8亿年前,海藻已遍布各处;到5亿年前,已经有许多种动物和海藻一起摇摆,其中有些大到肉眼可见。
类似地,今天的生物正在为进一步的复杂化做准备。正如细菌结合形成真核细胞,真核细胞又结合形成多细胞的动物、植物和真菌,在地球生命的最后阶段,多细胞生物也将互相结合形成一种全新的生物,其能力和效率将会超乎我们的想象。
种子在很久以前就已被种下。
纪录片《地球》(2007)剧照。
在植物首次登上陆地后不久,它们发现如果与地下的真菌形成密切联系的话,生存会容易很多。植物的根部和真菌结合形成的共生体叫作菌根。植物通过光合作用向真菌输送营养,而真菌深入地下吸取矿物质供给植物作为交换。
今天,绝大多数陆生植物会形成菌根,实际上若没有菌根,它们便无法生存。你下一次到树林中散步的时候,可以想象一下各种植物的菌根在你的脚下连接在一起,互相交换营养,形成一个包括整片树林的网络,并调节着所有树木的生长。实际上,森林中所有的树木和菌根形成了一个单独的超级有机体。
真菌有在很大范围内调节生命的潜力。全世界已知的最大生命体之一就是真菌。一株球蜜环菌(Armillariabulbosa)的微小菌丝在美国密歇根北部的森林里蔓延,占据了15公顷的面积。虽然人们几乎意识不到其存在,但它的总质量超过10000千克,而且至少已经存活了1500年。
但是我们很难把这株真菌定义为一个个体。真菌的菌丝悄无声息地在地下蔓延,侵入土壤层的每一个黑暗角落,形成了巨大的联合体。
植物登陆之后很久,在恐龙时代的巅峰时期经历了一场风平浪静的革命。花儿出现了。有花植物一开始只是这个世界上处于水边的不起眼的小生命,但是它们很快就变得相当普遍。1亿年之后,它们成为陆生植物界的主导者。花的优势之一是它们可以吸引传粉者,而不是依靠风、天气和运气完成受精。有花植物和许多其他生物一样,在对抗环境的过程中寻找到了生存捷径,改变了自己的命运。
与花的出现同步进行的是传粉昆虫种类的急剧增加,这可能并非偶然。增长最快的昆虫是组成膜翅目的蚂蚁、蜜蜂和黄蜂,以及组成鳞翅目的蝴蝶和蛾类。
这些昆虫类群已存在了数百万年,有花植物的出现加速了它们的演化。有些植物和它们的传粉者之间的联系十分紧密,无法离开对方独立生存。例如,无花果若没有它们的租客——榕小蜂就不能繁殖,而榕小蜂的全部生命都围绕着无花果这一种植物。无花果的果实在我们看来是一种水果,但实际上也是榕小蜂为自己创造的一个栖息地。