一、选择题易错分析及应对策略
易错考点1:同分异构体
一是考查概念,即判断两个有机物是否互为同分异构体;
二是考查数目,即判断某有机物同分异构体的数目。
【应对策略】同分异构体数目的常见判断方法:
1.基团连接法:将有机物看做由基团连接而成,由基团的异构数目可推断有机物的异构体数目。例如,丁基有4种结构,丁醇(看做丁基与羟基连接而成)也有4种结构;戊醛、戊酸(分别看做丁基与醛基、羧基连接而成)也均有4种结构。
2.替代法:将有机物中不同的原子或原子团互相替代。例如,二氯乙烷有2种结构,则四氯乙烷也有2种结构。
3.等效氢原子法(又称对称法):分子中等效氢原子有如下情况,
①分子中同一个碳原子上的氢原子等效;
②同一个碳原子上的甲基上的氢原子等效;
③分子中处于对称位置上的碳原子上的氢原子等效。
等效氢法适合于卤代烃、醇、醛、羧酸等有机物同分异构体数目的判断,将卤代烃、醇、醛、羧酸看做是卤原子、羟基、醛基、羧基分别取代烷烃中的氢原子,通过判断烷烃中等效氢原子的数目,即可判断同分异构体的数目。
易错考点2:阿伏加德罗常数
阿伏加德罗常数为近几年高考常考点,主要联系物质的量进行考查,具体内容涉及氧化还原反应、化学平衡、物质结构等。
【应对策略】阿伏加德罗常数的常见陷阱:
1.状况条件:提供气体体积,但非标准状况,例如常温常压,101 kPa、25 ℃等。
2.物质状态:提供标准状况,但非气态物质,例如标准状况下SO3为固体,Br2、水、HF(室温下为气体)、苯、CHCl3、CCl4等为液体。
3.氧化还原反应:例如Fe与Cl2反应生成FeCl3,Cu与S反应生成Cu2S等。
4.物质结构:例如稀有气体为单原子分子,NaHSO4晶体中所含离子为Na 、HSO4-,而NaHSO4在溶液中电离出的离子为Na 、H 、SO42-。
5.晶体结构:例如1 mol Si中含2 mol Si—Si键,1 mol SiO2中含4 mol Si—O键, 1 mol白磷中含6 mol P—P键,1 mol石墨中含1.5 mol C—C键,1 mol冰晶体中含2 mol氢键。
6.可逆反应:可逆反应不能进行完全,例如1 mol Cl2与足量水反应,转移的电子数小于NA。
7.化学平衡:例如 2 mol NO与1 mol O2充分反应,由于存在:2NO2(g)== N2O4(g),故产物的分子数小于2NA。
8.反应原理:例如电解精炼铜的过程中,阳极质量减少6.4 g时,转移的电子数不为0.2NA。
易错考点3:水溶液中的离子平衡
水溶液中的离子平衡为高频考点,重要考查点:
①电离平衡,包括弱电解质的稀释图象、电离常数的计算等;
②水解平衡,包括离子浓度大小比较等;
③溶解平衡,包括溶解平衡曲线及Ksp的计算等;
④酸碱中和滴定曲线。
【应对策略】酸碱中和滴定曲线的分析方法:
以一元酸和一元碱的中和滴定为例,滴定曲线主要考查4个点:
①滴定起点,根据酸、碱的浓度及pH值可以判断酸、碱的强弱;
②恰好反应点,此处为正盐溶液,往往考查离子浓度大小比较;
③溶液中性点,此处为中性溶液,往往考查消耗酸溶液或碱溶液的体积;
④滴定2倍点,此处为等物质的量浓度的酸及其正盐或碱及其正盐的混合溶液,往往考查质子守恒。
二、化学大题高分得分策略
1.化学反应原理类试题
该类题主要把热化学、电化学、化学反应速率及三大平衡知识融合在一起命题,有时有图像或图表形式,重点考查热化学(或离子、电极)方程式的书写、离子浓度大小比较、反应速率大小、平衡常数及转化率的计算、电化学装置、平衡曲线的识别与绘制等。设问较多,考查的内容也就较多,导致思维转换角度较大。试题的难度较大,对思维能力的要求较高。
【答题策略】这类试题考查的内容很基础,陌生度也不大,所以复习时一定要重视盖斯定律的应用与热化学方程式的书写技巧及注意事项。有关各类平衡移动的判断、常数的表达式、影响因素及相关计算;影响速率的因素及有关计算的关系式;电化学中两极的判断、离子移动方向、离子放电先后顺序、电极反应式的书写及有关利用电子守恒的计算;电离程度、水解程度的强弱判断及离子浓度大小比较技巧等基础知识,都是平时复习时应特别注意的重点。
在理解这些原理或实质时,也可以借用图表来直观理解,同时也有利于提高自己分析图表的能力与技巧。总结思维的技巧和方法,答题时注意规范细致。再者是该类题的问题设计一般没有递进性,故答题时可跳跃式解答,千万不能放弃。
2.实验类试题
该类题主要以化工流程或实验装置图为载体,以考查实验设计、探究与实验分析能力为主,同时涉及基本操作、基本实验方法、装置与仪器选择、误差分析等知识。命题的内容主要是气体制备、溶液净化与除杂、溶液配制、影响速率因素探究、元素金属性或非金属性强弱(物质氧化性或还原性强弱)、物质成分或性质探究、中和滴定等基本实验的*或延伸。
【答题策略】首先要搞清楚实验目的,明确实验的一系列操作或提供的装置都是围绕实验目的展开的。要把实验目的与装置和操作相联系,找出涉及的化学原理、化学反应或物质的性质等,然后根据问题依次解答即可。
3.化学工艺流程题
无机化工题实际上是考查考生运用化学反应原理及相关知识来解决工业生产中实际问题的能力。解此类型题目的基本步骤是:①从题干中获取有用信息,了解生产的产品②分析流程中的每一步骤,从几个方面了解流程:A.反应物是什么;B.发生了什么反应;C.该反应造成了什么后果,对制造产品有什么作用。抓住一个关键点:一切反应或操作都是为获得产品而服务。③从问题中获取信息,帮助解题。了解流程后着手答题。对反应条件的分析可从以下几个方面着手: 对反应速率有何影响?对平衡转化率有何影响?对综合生产效益有何影响?如原料成本,原料来源是否广泛、是否可再生,能源成本,对设备的要求,环境保护(从绿色化学方面作答)。
【常见答题规律】(1)增大原料浸出率(离子在溶液中的含量多少)的措施:搅拌、升高温度、延长浸出时间、增大气体的流速(浓度、压强),增大气液或固液接触面积
(2)加热的目的:加快反应速率或促进平衡向某个方向(一般是有利于生成物生成的方向)移动
(3)温度不高于××℃的原因适当加快反应速率,但温度过高会造成挥发(如浓硝酸);分解(如H2O2、NH4HCO3);氧化(如Na2SO3);促进水解(如AlCl3)等,影响产品的生成,造成浪费
(4)从滤液中提取一般晶体(溶解度随温度升高而增大的晶体)的方法【蒸发浓缩<至有晶膜出现>、冷却结晶、过滤、洗涤(冰水洗、热水洗、乙醇洗)、干燥】
(5)从滤液中提取溶解度受温度影响较小或随温度升高而减小的晶体的方法(蒸发浓缩、趁热过滤<如果温度下降,杂质也会以晶体的形式析出来>、洗涤、干燥)
(6)溶液配制、灼烧、蒸发、过滤用到的仪器(“仪器”可以换另一种方式来考察,如:玻璃仪器、可以直接在火焰上加热的仪器等)
(7)控制某反应的pH值使某些金属离子以氢氧化物的形式沉淀(调节pH所用试剂为主要元素对应的氧化物、碳酸盐、碱,以避免引入新的杂质;pH分离时的范围确定、范围过小的后果<导致某离子沉淀不完全>或过大的后果<导致主要离子开始沉淀>)
(8)减压蒸馏(减压蒸发)的原因:减小压强,使液体沸点降低,防止(如H2O2、浓硝酸、NH4HCO3)受热分解\挥发
(9)检验溶液中离子是否沉淀完全的方法:将溶液静置一段时间后,向上层清液中滴入对应的沉淀剂(必要时先加酸酸化排除其他离子的干扰),若无沉淀生成,则离子沉淀完全(写出详细的操作、现象、结论)
(10)洗涤沉淀:沿玻璃棒往漏斗中加蒸馏水至液面浸没沉淀,待水自然流下后,重复操作2-3次
(11)检验沉淀是否洗涤干净的方法:取少量最后一次的洗涤液于试管中,向其中滴入某试剂,若……,则沉淀洗涤干净(写出详细的操作、现象、结论)
(12)洗涤的目的:除掉附着在沉淀表面的可溶性杂质
(13)冰水洗涤的目的:洗去晶体表面的杂质离子并降低被洗涤物质的溶解度,减少其在洗涤过程中的溶解损耗
(14)乙醇洗涤的目的:降低被洗涤物质的溶解度,减少其在洗涤过程中的溶解损耗,得到较干燥的产物
(15)蒸发、反应时的气体氛围:抑制某离子的水解,如加热蒸发AlCl3溶液时为获得AlCl3需在HCl气流中进行
(16)事先煮沸溶液的原因:除去溶解在溶液中的(如氧气)防止某物质被氧化
(17)控制PH可以抑制或促进物质的水解
三、回归教材:选修3
第一章:原子结构与性质
1.人类对原子结构的认识发展过程。
2.能层即电子层。分别用K、L、M、N、O、P、Q表示。每一个能层分为不同的能级,能级符号用s、p、d、f表示,分别对应1、3、5、7个轨道。能级数=能层序数。
3.基态与激发态。焰色反应是原子核外电子从激发态回到基态释放能量。能量以焰色的形式释放出来。
4.不同能层相同能级的电子层形状相同。ns呈球形,np呈哑铃形。
5.元素周期表的结构。周期(一、二、三短周期,四、五、六长周期,七不完全周期)和族(主族、副族、Ⅷ族、0零族)。分区(s、p、d、ds、f)。
6.对角线规则。在元素周期表中,某些主族元素与右下方的主族元素的性质有些相似,被称为“对角线规则”。Li、Mg在空气中燃烧的产物为LiO、MgO,铍与铝的氢氧化物Be(OH)2、Al(OH)3都是两性氢氧化物,硼与硅的最高价氧化物对应水化物的化学式分别为HBO2、H2SiO3都是弱酸。是因为这些元素的电负性相近。
第二章:分子结构与性质
1.等电子体原理。原子总数相同,价电子数相同,等电子体有相似的化学键特征和空间构型。常见的等电子体有:N2和CO;N2O和CO2;SO2、O3和NO2-;SO3和NO3-;NH3和H3O ;CH4和NH4 。
2.仔细观察资料卡片的彩图。
3.区别形和型。VSEPR模型和分子或离子的立体构型,价层电子对数和σ键数、孤电子对数。如SO2分子的空间构型为V形,VSEPR模型为平面三角形,价层电子对数为3,σ键数为2、孤电子对为1。
4.含Cu2 的水溶液呈天蓝色,是因为四水合铜离子[Cu(H2O)4]2 ,该离子中,Cu2 和H2O分子之间的化学键叫配位键,是由H2O中的氧原子提供孤电子对,Cu2 接受H2O提供的孤电子对形成的。
5.向含有硫酸铜溶液的试管里加入氨水
形成蓝色沉淀[Cu2 2NH3·H2O=Cu(OH)2↓]。
继续加氨水,沉淀溶解,得到深蓝色的溶液[Cu(OH)2 4NH3=[Cu(NH3)4]2 2OH-],若再加入极性较小的溶剂(如乙醇),将析出深蓝色的晶体[Cu(NH3)4]SO4·H2O。
6.氢键及其对物质性质的影响。
氢键的表示方法:A-H···B-,其中A、B为电负性较大的N、O、F。接近水的沸点的水蒸气的相对分子质量比18大,是由于H2O因氢键而相到缔合,形成所谓的缔合分子。
7.HF在标况下的状态。
8.氢键有方向性,使冰晶体中的水分子的空间利用率不高,留有相当大的空隙。所以冰的密度比水小。冰融化时密度先增加后减小。
9.邻羟基苯甲醛分子内氢键使沸点降低,分子间氢键使沸点升高。氢键是一种较强的分子间的作用力,不属于化学键。
相似相溶:非极性溶质一般能溶于非极性溶剂,极性溶质一般能溶于极性溶剂。影响溶解度的因素是多样的。如氨气极易溶于水是因为氨与水反应,氨和水都是极性分子,氨分子和水分子之间形成氢键。又如能用饱和食盐水收集氯气等。
10.无机含氧酸分子的酸性。了解H2SO4、H3PO4、HNO3的结构简式,知道每一个分子中的配位键。学会用非羟基氧判断酸性强弱。非羟基氧≥2为强酸。非羟基氧越大,酸性越强。H2CO3的非羟基氧为1,酸性和HNO2、H3PO4相近,但H2CO3酸性却很弱,是因为溶于水的碳酸只有很少的与水结合生成H2CO3。
第三章:晶体结构与性质
1.晶体的自范性即晶体能自发地呈现多面体外形的性质,晶体常常会表现出各向异性。区别晶体和非晶体最可靠的方法是对固体进行X-射线衍射实验。
画出金刚石晶胞,明确各个原子的位置关系。
2.判断典型的分子晶体:如果分子间的作用力只是范德华力,若以一个分子为中心,其周围通常有12个紧邻的分子。分子晶体的这一特征称为分子密堆积。
3.一个H2O平均有两个氢键。干冰晶体中,CO2的配位数是12。P68-69会判断常见的原子晶体。
4.金属导电是因为金属晶体中的自由电子在外加电场的作用下可发生定向移动。金属易导电、导热、延展性,都可以用“电子气理论”解释。
5.金属原子在平面里放置得到两种方式:非密置层(配位数为4)和密置层(配位数为6)。
6.金属晶体的四种堆积模型(名称、典型代表、空间利用率、配位数、晶胞模型)。为什么石墨为混合型晶体?
7.离子晶体。CsCl、NaCl阴阳离子个数比都是1:1,但它们的配位数不一样。仔细观察CaF2的晶胞,Ca2 的配位数为8,F-的配位数为4。
8.科学视野中,MgCO3、CaCO3、SrCO3、BaCO3分解温度越来越高?碳酸盐的分解是由于晶体中的阳离子结合碳酸根离子中的氧离子,使碳酸根离子分解成CO2,由于对应阳离子半越来越大,结合氧离子能力越来越弱,所以受热温度越来越高。
晶体熔沸点比较:
若是同类型的晶体,一定要指明晶体类型,再描述比较规律,得出结论。
分子晶体:HBr、HI。它们都为分子晶体,结构相似,相对分子质量越大,分子间作用力越大,所以HI高。
原子晶体:晶体Si、金刚石C。它们都为原子晶体,共价键键长越长,键能越小。Si原子半径大于C,所以碳碳键键能大,金刚石熔点高。
离子晶体:Na、Mg、Al。它们都为金属晶体,离子半径越来越大,价电子越来越多,金属键越来越强,熔点依次升高。
离子晶体:NaCl、CsCl。它们都为离子晶体,Na 半径小于Cs 半径,离子键越强,熔点越高。
若是不同类型的晶体,一般是原子晶体>离子晶体>分子晶体。
描述时要指明克服微粒的作用力并指明大小。如金刚石、NaCl、干冰。由于克服原子晶体中共价键所需的能量>离子晶体中离子键所需的能量>分子晶体中范德华力所需的能量,所以熔点依次降低。