初音未来是如何诞生的,初音未来是怎么开始火的

首页 > 娱乐 > 作者:YD1662024-06-13 20:14:26

Joseph L. Chu作品, 在30分钟的日本流行摇滚乐队上训练

☟Priya Pramesi作品,训练于Joanna Newsom的音乐。

https://youtu.be/q0ZdSAkGo48

很遗憾的是char-rnn在抽取音频信号的更高级的表示上是有天然的不足。最好的结果也只是输入数据的噪音版罢了。在机器学习里面,这种情况同“过拟合”有关,即模型在训练集上的效果很好,而对没有见过的测试集数据的效果很差。

在训练过程中,模型起初在训练集上和测试集上表现都很差,而后开始逐渐转好。但是如果训练时间过长,就会导致模型的泛化能力下降,从而发生过拟合。研究者们通常会在模型开始过拟合前停止训练。

过拟合在这种创造性任务中其实不算是一个“问题”,因为对现有音乐的重新排列也是一种创作的方式,而很难和“归纳”区分开。比如David Cope就说过“所有的音乐本质上都是灵感上的抄袭”(当然这话有点讽刺因为他自己曾被指控发表伪科学和直接的抄袭)。

2016年9月DeepMind发布了WaveNet。这个神经网络框架能够通过连续的采样抽象出出音频的高级表示。

初音未来是如何诞生的,初音未来是怎么开始火的(5)

WaveNet网络结构里用到的空洞卷积示意图

初音未来是如何诞生的,初音未来是怎么开始火的(6)

WaveNet 样本在8位数值上的概率分布

WaveNet并没有用RNN学习音频在时间上的表示,而是使用CNN,即卷积神经网络。CNN学习的是过滤器的组合。虽然CNN通常被用来处理图像数据,但WaveNet通过CNN可以用空间卷积的方式来处理时序数据。

如果我们仔细了解一下Wavenet作者们的背景,会发现很多有意思的WaveNet的先驱们。

我最喜欢的是Sageev Oore用WaveNet生成了下面这首简单的钢琴曲。Sageev当时正处在为谷歌大脑工作的休假期间。

☟打开链接观看欣赏音乐

https://youtu.be/xTVwYFpK5Mo

初音未来是如何诞生的,初音未来是怎么开始火的(7)

Sageev Oore在弹奏WaveNet生成的音乐

在2017年4月,Magenta项目在WaveNet的基础上创造了NSynth,这是一个用来分析和生成单声道的乐器声音的模型。他们同位于纽约的谷歌创造实验室Google Creative Lab,共同推出了一个以NSynth驱动的“音乐生产者”的实验。。

初音未来是如何诞生的,初音未来是怎么开始火的(8)

上一页123下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.