一 、f(x)在 x0 处的导数(或变化率):
图(1)
① 瞬时速度:
瞬时速度图
② 瞬时加速度
瞬时加速度图
二、 函数 y = f(x)在点 x0 处的导数的几何意义:
函数 y = f(x)在点 x0 处的导数是曲线 y = f(x)在点 P(x0 , f(x0)) 处的切线的斜率 f '(x0);
相应的切线方程是: y - y0 = f '(x0)(x - x0)。
三、几种常见函数的导数:
① C' = 0 (C 为常数);
② 幂函数
一 、f(x)在 x0 处的导数(或变化率):
图(1)
① 瞬时速度:
瞬时速度图
② 瞬时加速度
瞬时加速度图
二、 函数 y = f(x)在点 x0 处的导数的几何意义:
函数 y = f(x)在点 x0 处的导数是曲线 y = f(x)在点 P(x0 , f(x0)) 处的切线的斜率 f '(x0);
相应的切线方程是: y - y0 = f '(x0)(x - x0)。
三、几种常见函数的导数:
① C' = 0 (C 为常数);
② 幂函数
Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.