罗伯特·朗用16张未切割的温德斯通"大理石"方纸块制作的异特龙骨架。尺寸:24英寸。图片来源感谢罗伯特·朗。
折纸简史
尽管英文中“折纸”(origami)一词来源于日语,并经常同日本联系在一起,但是有记载的最早的折纸来源于中国。早在公元200年左右中国就能生产出纸张了,那时候将其用作丝绸的廉价替代品。在中国,折纸的艺术(The art of paper folding)读作“Zhezhi ”,中国佛教僧侣在6世纪时把纸带到了日本。
由罗伯特·朗用一个未切割的正方形韩国汉吉纸制作的飞马。尺寸:7英寸。图片来源感谢罗伯特·朗。
折纸从此在日本生根发芽并发扬光大。“origami”一词本身就是两个较小的日语词汇的组合:"ori",意思是折叠,和"gami",意思是纸。这项艺术是(现在仍然是)日本儿童许多世纪以来流行的消遣方式。
如果不是一个日本工人的出现,折纸艺术可能还是按照传统的样式存在下去。这位叫作吉泽章( Akira Yoshizawa)的工人于1911年出生于一个奶农家庭。吉泽小的时候很喜欢折纸。而且和其他孩子一样,随着年龄的增长,对于吉泽章来说折纸的魅力减弱了,他开始找到其他东西来代替折纸以消磨时间。但是与绝大多数孩子不同,20岁出头的吉泽章重新找到了他和这折纸的关系。当时他在一家工厂里教初级员工几何学。吉泽章突然意识到,折纸其实是一种可以帮助他的学生们理解角度、线条以及形状的简单却有效的方法。
吉泽章 图片来源:网络
随着吉泽练习得越来越多,他开发出了许多开创性的技术,比如“湿法折纸”,这种技术可以把单张纸折出更加复杂的图案甚至曲线出来。他的工作使得折纸重新焕发了生机,他的这些技术使得折纸从古怪的小打小闹,变成了一门真正的艺术形式。随着越来越复杂的折纸图案被设计出来,这项艺术开始吸引了数学家的注意,而他们的想法和吉泽不谋而合——折纸与几何学之间有着巨大的交叉联系。折纸的数学研究最终演变成了解决两个问题的新方法。而这两个问题来源于不同的文化,根植于不同的大洲,已经有了很多年的历史。
欧几里得的元素
亚历山大的欧几里得是一位2000年前的希腊数学家,通常我们称之为“几何学之父”。欧几里得的作品《几何原本》是数学史上最成功的教科书,也是已知最早系统性讨论几何学领域的书。
欧几里得知道,只用无刻度的直尺和圆规就可以完成大量的几何操作,比如画出五边形、六边形还有圆。这一点在当时也是众所周知的,所以欧几里得能完成这些也并非非比寻常。
但是,欧几里得的开创性工作在于,他采用了系统性的方法来研究几何问题。《几何原本》中的每一个几何结构和数学结果都是从一组五个假设出发分步推导出来的,其中也包括了使用尺规可能进行的操作:
给定两点可以经过它们画一条线;
任何线段的两端都可以无限延伸;
可以以给定点为圆心,以从这一点出发的线段为半径做圆;
所有直角彼此相等;
给定一条直线和不在线上的一点P,只有一条线经过P且不与原线相交。
用汉吉纸、线和木头制作的蜂鸟和凌霄花。尺寸:15英寸。图片来源感谢罗伯特·朗
这些假设,被称为欧几里得公理,它们似乎是显而易见的。事实上欧几里得自己也认为,它们是如此明显,这本身是不言而喻的。但是这些公理的美丽之处在于,它们可以用来构造出各种定理的几何证明,而这些证明本身比这几条公理要复杂的多。
但是欧几里得公理本身也有局限性。古代有最著名的两个问题,一个是三等分角问题(将给定角度分成三个相等的部分)和立方体的倍增问题(构造一个立方体,其体积正好是给定立方体的两倍)。据传说,古代德洛斯的市民就面临着后一个问题,当时德尔福的预言家建议他们加倍他们的祭坛体积,以避免瘟疫。然而,事实证明,仅使用欧几里得的尺规作图法是不可能解决这个问题的。三等分角也是无法用尺规作图解决的。
但实际上,这两个问题都可以用折纸来解决!因此,我们仿佛看到了一种惊人的可能性——折纸几何比欧几里得几何更强大。
折纸的独到之处
正如欧几里德为平面几何设计了公理一样,现代数学家藤田文章(Humiaki Huzita)和羽鸟公士郎(Koshiro Hatori)设计了一套完整的公理来描述折纸几何学——Huzita-Hatori公理。