5.2钢结构设计
601m以上是带交叉斜撑的钢框架,它承受重力、风力和地震作用。钢框架逐步退台,从第18级的核心筒六边形到第29级的小三角形,最后只剩直径为1200 mm的桅杆。这根桅杆是为保持世界第一建筑高度而专门设计的,它可从下面接长,不断顶升,预留了200m的上升高度(图9)。
所有外露的钢结构都包铝板作为装饰。钢结构按美国钢结构协会AISC《钢结构建筑荷载和抗力系数设计规范》进行设计。
5.3结构分析
结构分析采用ETABS8.4版,考虑了重力荷载(包括P-D二阶效应)、风荷载和地震效应。建立三维分析模型,包括钢筋混凝土墙、连梁、板、柱、顶部钢结构、筏板和桩。
分析模型共73500个壳元、75000个节点。分析参数如下。
(1)风力:50年一遇,55m/s,风压按风洞试验取值;
(2)地震:按美国标准UBC97的2a区,地震系数为0.15,相当于我国8度设防;
(3)温度:气温变化范围为2~54℃。
分析结果表明,在50年一遇风力作用下,结构水平位移:828m顶部处为1450mm,办公层顶部处为1250mm,公寓层顶部处为450mm。这个位移值低于通用的标准,符合设计的要求。动力分析得到各振型和周期:T1=11.3s(X向),T2=10.2s(Y向),T5=4.3s(扭转)。
内力分析表明,钢筋混凝土塔楼部分地震力不起控制作用;但裙房和顶部钢结构处,地震内力对设计有作用。
6长期荷载分析和施工过程分析
6.1超高建筑竖向荷载的时间和过程效应
通常采用线性有限元分析竖向荷载下的墙、柱内力和位移。随高度增加,这种分析方法会偏离真实情况。因为长期过程,即与时间相关的施工顺序、徐变、收缩都会引起内力重分布,而且竖向荷载还产生水平侧移,这些采用常规分析是不可能的。
哈利法塔设计中对这些因素进行了详细的分析。分析采用了GL2000(2004)模型,考虑了钢筋的影响,也考虑了施工过程。
6.2施工过程分析
施工全过程分成15个阶段,采用三维模型进行分析,同时也考虑了收缩和徐变。每个模型都代表施工过程的一个时间点,施加当时所增加的新荷载。到施工结束,分析还延续到50年后。
6.3补偿技术
施工过程中两个方向的平移应根据计算结果予以补偿、校正;竖向压缩则每层的层高应增加一个补偿值。中心筒在施工过程中会产生偏心,偏心调整应每层进行,可以通过纠正重力荷载产生的侧移(弹性位移、基础底板沉降差、徐变、收缩)来补偿。
6.4竖向缩短
结构竖向压缩每层平均为4mm,整座建筑的顶点为650mm。这个缩短通过每层标高的调整来补偿。
由于收缩和徐变,钢筋混凝土竖向构件的内力会在钢筋和混凝土之间重新分配。由于要求两者应变相同,混凝土分担的内力会逐渐减少,而钢筋的内力会相应增加。哈利法塔第135层的墙、柱中钢筋与混凝土的内力比会从15%,85%变为30%,70%。
7地基和基础
采用摩擦桩加筏板联合基础(图10)。
图10 桩筏联合基础
7.1地基
地基为胶结的钙质土和含砾石的钙质土。天然地基土与混凝土桩的表面极限摩擦力为250~350kPa。
7.2桩
194根现场灌注桩,长度约43m,直径为1500mm。桩的设计承载力为3000t。现场进行了压桩试验,最大压力为6000t,桩尖深度为70m。
迪拜地下水有腐蚀性,氯离子浓度为4.5%,硫为0.6%。因此桩采用C60混凝土,加25%粉煤灰和7%硅粉;水灰比为0.32,坍落度为675mm。
7.3筏板
筏板厚度为3.75m,采用C50自密实混凝土(SCC),加40%粉煤灰,水灰比为0.34。在现场进行了坍落度和流动性试验。
钢筋间距双向为300mm,但在每一个方向每隔10根钢筋取消1根钢筋,形成600mm×600mm的无钢筋洞口,便于浇筑混凝土。为了研究浇灌工艺和控制温升的措施,在现场制作了边长为3.75m的实大立方体。
为减弱地下水的腐蚀作用,底板铺设了一层钛丝编织的阴极保护网。
筏板连同桩、周边土体进行了三维有限元分析。分析指出,基础长期沉降为80mm,施工到135层时沉降为30mm。工程完工后,实测沉降为60mm。
8施工
8.1混凝土配合比
竖向结构混凝土要求10h强度达到10MPa以保证混凝土施工能正常循环。最终强度达到80MPa(127层以下)和60MPa(127层以上),C80混凝土的弹性模量为44000MPa。混凝土还要有好的和易性,有适合于600m泵送高度的坍落度。
迪拜冬天冷,夏天气温则在50℃以上,所以不同季节要调节混凝土的强度增长率及和易性损失值。
8.2混凝土的超高度泵送
哈利法塔创造了混凝土单级泵送高度的世界记录-601m。达到这个空前高度的最大困难是混凝土的配合比设计。采用了4种不同的配合比以便能用较小的压力把混凝土送到不同的高度。
2005年4月进行了一次水平泵送试验,泵送压力与送到600m高度的压力相同。试验确认了泵送600m高度的可行性,并实测了摩擦系数,泵送压力为20MPa。
所用的泵送混凝土含13%粉煤灰和10%的硅粉。集料最大粒径为20mm;自密实,坍落度为600mm。
采用了3台世界上最大的混凝土泵,压力可达35MPa。配套直径为150mm的高压输送管。
8.3模板和混凝土浇筑
整个基础筏板混凝土接近45000m3,按中心部分和3个翼板分成4段浇筑,每段相隔24h。
上部结构的墙体用自升式模板系统(图11)施工,端柱则采用钢模施工,无梁楼板用压型钢板作为模板。首先浇筑中心筒及其周边楼板,然后浇筑翼墙及相关楼板,最后是端柱和附近楼板(图12)。
图11 自升式模板系统