飞利浦集团有多强,飞利浦500强排名

首页 > 家居 > 作者:YD1662022-11-29 22:48:31

新材料是人类赖以生存的物质基础,每种新材料的出现及应用都将伴随着现代科学技术的巨大飞跃。从现代科学技术史中不难看出,每一项重大科技的突破在很大程度上都依赖于相应的新材料的发展。所以新材料是现代科技发展之本,美国将新材料称之为“科技发展的骨肉”。新材料技术被称为“发明之母”和“产业粮食”。

新材料产业的创新主体是美国、日本和欧洲等发达国家和地区,其拥有绝大部分大型跨国公司,在经济实力、核心技术、研发能力、市场占有率等多方面占据绝对优势,占据全球市场的垄断地位。其中,全面领跑的国家是美国,日本的优势在纳米材料、电子信息材料等领域,欧洲在结构材料、光学与光电材料等方面有明显优势。中国、韩国、俄罗斯紧随其后,目前属于全球第二梯队。中国在半导体照明、稀土永磁材料、人工晶体材料,韩国在显示材料、存储材料,俄罗斯在航空航天材料等方面具有比较优势。除巴西、印度等少数国家之外,大多数发展中国家的新材料产业相对比较落后。从新材料市场来看,北美和欧洲拥有目前全球最大的新材料市场,且市场已经比较成熟,而在亚太地区,尤其是中国,新材料市场正处在一个快速发展的阶段。从宏观层面看,全球新材料市场的重心正逐步向亚洲地区转移。

世界新材料主要生产商美国铝业、杜邦、拜耳、GE塑料、陶氏化学、日本帝人、日本TORAY、韩国LG等大型跨国公司,加速对全球新材料产业的垄断,并在高技术含量、高附加值的新材料产品市场中保持主导地位。

值得一提的是,发达国家仍在国际新材料产业中占据领先地位,世界上新材料龙头企业主要集中在美国、欧洲和日本,其中,日、美、德6家企业占全球碳纤维产能70%以上,日、美5家企业占全球12寸晶圆产量的90%以上,日本3家企业占全球液晶背光源发光材料产量的90%以上。

值得一提的是,世界著名企业集团凭借其技术研发、资金和人才等优势不断向新材料领域拓展,尤其在高附加值新材料产品中占据主导地位。比如著名的尤尼明几乎垄断着国际市场上4N8及以上高端石英砂产品;比如全球新材料巨头信越、SUMCO、Siltronic、SunEdison等企业占据国际半导体硅材料市场份额的80%以上。而半绝缘砷化镓市场90%以上被日本日立电工、住友电工、三菱化学和德国FCM所占有。

再比如DuPont、Daikin、Hoechst、3M、Ausimont、ATO和ICI等7家公司拥有全球90%的有机氟材料生产能力。美国科锐(Cree)公司的碳化硅衬底制备技术具有非常强的全球市场竞争力,飞利浦(Philips)控股的美国Lumileds公司的功率型白光LED国际领先,美、日、德等国企业拥有70%LED外延生长和芯片制备核心专利。

在小丝束碳纤维的制造领域,基本被日本的东丽纤维公司、东邦公司、三菱公司和美国的Hexel公司所垄断,而大丝束碳纤维市场则几乎由美国的Fortafil公司、Zoltek公司、Aldila公司和德国的SGL公司4家所占据。美铝、德铝、法铝等世界先进企业在高强高韧铝合金材料的研制生产领域居世界主导地位。美国的Timet、RMI和Allegen Teledyne等三大钛生产企业的总产量占美国钛加工总量的90%,并且是世界航空级钛材的主要供应商。下面分别介绍世界六大主要的新材料大国及强国的具体情况如下:

一、中国

飞利浦集团有多强,飞利浦500强排名(1)

中国是全球新材料产业首屈一指的产业规模大国。众所周知,新材料产业被认为是21世纪最具发展潜力并对未来发展有着巨大影响的高新技术产业,且新材料是国际竞争的重点领域之一,也是决定一国高端制造及国防安全的关键因素,全球范围内都在积极发展新材料,尤其是发达国家。值得一提的是,新材料产业是我国七大战略新兴产业之一,是整个制造业转型升级的产业基础。我国新材料产业规模大约2万亿元。

中国新材料产业尤其在金属材料、纺织材料、化工材料等传统领域基础较好,稀土功能材料、先进储能材料、光伏材料、有机硅、超硬材料、特种不锈钢、玻璃纤维及其复合材料等产能居世界前列。经过几十年奋斗,中国新材料产业从无到有,不断发展壮大,在体系建设、产业规模、技术进步等方面取得明显成就,为国民经济和国防建设做出了重大贡献,具备了良好发展基础。中国新材料需求将呈现持续增长的趋势发展,到2025年其产值将突破10万亿元,发展前景十分广阔!值得一提的是,早在2011年我国新材料产业总产值仅仅为0.8万亿元,到 2019年我国新材料产业总产值已增长至4.5万亿元,同比增长15.4%,预计到2021年有望突破7万亿元。

中国在部分先进基础材料、关键战略材料、前沿新材料等领域,已经实现了与国际先进水平“并跑”甚至“领跑”。比如在关键战略材料方面,中芯国际前七大耗材中六类材料实现国产采购;南山集团铝合金厚板通过波音公司认证并签订供货合同;比如中船重工兆瓦级稀土永磁电机体积比传统电机减少50%、重量减轻40%;再比如世界首座具有第四代核电特征的高温气冷堆核电站关键装备材料国产化率超过85%;液态金属在3D打印、柔性智能机器、血管机器人等领域实现初步应用等。

中国的石墨烯技术是世界领先水平。石墨烯技术是当今世界各国争相开发的前沿技术领域,皆因它具有无与伦比的特性,对将来新材料的发展具有至关重要的作用。而2017世界石墨烯创新大会是在中国常州开幕的,意味着中国石墨烯技术已经开始走在世界前列。值得一提的是,石墨烯材料最早是有英国科学家发现的,石墨烯是已知世界上最薄、最硬的材料,被誉为“黑金”、“新材料之王”。根据悉,石墨烯的厚度可达头发丝的20万分之一,强度是钢的200倍。科学家预言,石墨烯将会是21世纪最重要的新材料,市场应用前景不可估量。石墨烯技术已被世界许多国家列为优先发展的材料技术,虽然中国接触石墨烯技术只有短短几年时间但发展势头很猛,且中国拥有巨大的潜在市场。

中国的人工晶体材料经过多年的发展,偏硼酸钡和三硼酸锂等紫外非线性光学晶体研究居国际领先水平并实现了商品化;激光晶体、太阳能电池关键技术指标达到国际先进水平,光伏发电成本降到1元/kWh)以下。

中国的锂离子电池正负极材料、电解液均满足小型电池要求,隔膜、电解质锂盐等关键材料替代进口;超高分子量聚乙烯纤维大幅缩小与发达国家的差距。T300级碳纤维实现了稳定生产,单线产能提高到1200t;T700和T800级碳纤维实现了批量供货能力已开始应用于航空航天装备;中国开发出具有自主知识产权的铜带、铜管拉铸技术以及铜铝复合技术;中国的海底管线钢X65、X70、X80及厚壁海洋油气焊管、化学品船用中厚板均已实现国产化,尤其是低成本石墨烯已开始生产,并应用于触摸屏、导热膜等信息通讯器件。中国在关键技术领域的突破及新材料品种的不断增加,使我国高端金属结构材料、新型无机非金属材料、高性能复合材料保障能力明显增强,先进高分子材料和特种金属功能材料自给水平逐步提高。

中国拥有全球最完备的液体金属全产业链,由原材料到制成,由专利到工艺,已可大规模生产锆基非晶合金,尤其在块状成型工艺技术里,已掌握液态金属核心技术。值得一提的是,中国在材料配方、设备制造和成型工艺的三大核心技术,都拥有自主的知识产权,也是全球唯一的一家能对外公布具备大形块状非晶金属成型能力的国家。因此,中国的块体非晶产业发展技术已走在世界前列。

再比如中国科学院金属研究所等合作开发的可降解纯镁骨钉获得国家药品监督管理局的临床批件,成为我国第一个获得临床批件的可降解镁基金属医疗器械产品,也是全球第一例纯镁III类植入物。

二、日本

飞利浦集团有多强,飞利浦500强排名(2)

日本是全球公认的新材料生产技术最先进的国家。新材料产业被国际上认为是21世纪最具发展潜力并对未来发展有着巨大影响的产业。日本作为新材料生产技术最先进的国家,日本政府十分重视新材料技术的发展,尤其重点把开发新材料列为国家高新技术的第二大目标,因此,日本材料企业在全球新材料产业界形成一枝独秀领先局面。

日本内阁会议早于2016年就通过了《第五期科学技术基本计划(2016-2020)》,日本政府未来计划5年将确保研发投资规模占GDP比例的4%以上。

值得一提的是,日本机械制造工业长期保持全球先进水平与其发达的材料产业密不可分。比如日本在新材料全球占有率方面, 日本的新材料产业凭借其超前的研发优势、先进的研发成果、实用化开发力度,在环境及新能源材料世界市场占据绝对的领先地位。

日本拥有世界领先的新材料巨头:比如享誉世界的京瓷株式会社;三井化学株式会社(Mitsui Chemicals)等;日本同时还拥有了享誉世界的顶尖大学:比如著名的东京大学。东京大学曾经培养了十六名总理大臣、二十一名(日本)国会议长,十三名富比世500大企业首席执行官。十一名诺贝尔奖得主、六名沃尔夫奖得主、一名菲尔兹奖、三名罗伯·柯霍奖、四名盖尔德纳国际奖及四名普立兹克建筑奖得主。比如名古屋大学 。它是日本顶尖、世界一流的著名研究型国立综合大学,是日本中部地区最高学府。名古屋大学曾经培养出6名诺贝尔奖得主、1名菲尔兹奖得主。

日本的材料学已成为国际上最顶尖的技术。特别是材料学的水平及实力极大程度上决定了一个国家的最高科技水平。比如世界上最先进的装甲车必需的优质材料;最先进的导弹外壳必须采用极优质材料。尤其是飞机发动机叶片更需要出色而优质的高科技新材料。再比如世界上高精尖的军用雷达半导体元器件也需要优中选优的新材料。

日本在新材料领域,甚至已远远领先最发达国家美国很大的身位,即使包括俄罗斯及欧洲发达国家和日本也不在一个档次上。比如在高精尖的三种材料技术领域:首先是制造洲际弹道导弹喷管和壳体以及飞机骨架——高强度碳纤维材料;其次是全球最高性能主动相控阵军用雷达的——宽禁带半导体收发组件材料;再次是制造新式涡轮发动机涡轮叶片的——高性能单晶叶片。可以说,日本在这三种顶级科技领域遥遥领先,全球其他国家只能望其项背。

众所周知,最先进的涡轮发动机叶片的五代单晶材料,由于涡轮叶片工作环境十分恶劣,需极度高温高压之下依然能够保持数万转的极高转速,对于高温高压下的抗蠕变性能的条件及要求是相当苛刻的。值得一提的是,世界上单晶材料共有五代。越到最后一代,就越看不到老牌发达国家的影子,尤其是军事超级大国俄罗斯更不在话下。而第五代单晶技术水平是日本的天下。全球最顶级的单晶材料就是日本研发的第五代单晶TMS-162/192, 日本已成为全球唯一一个能制造第五代单晶材料的国家,在全球市场上具有绝对的话语权。

再比如全球传统材料学和发动机技术的欧洲最顶尖水平公司——英国著名的发动机公司罗尔斯·罗伊斯(RR),也是欧洲最大的航空发动机企业,旗下产品包括航空发动机、船舶发动机以及核动力潜艇的核动力装置,其中航空发动机是世界久负盛名的拳头产品。如此这样一家全球技术最顶尖的公司,在日本的新材料面前也只能膜拜及俯首称臣。比如英国RR甚至于大批进口日本的单晶材料用于制造自己的世界先进的Trent涡轮风扇发动机。因此,日本的新材料技术,让全球很多国家离不开它,离开了寸步难行。一个重要原因是,日本的新材料不但质量极佳,而且拥有十分“恐怖”的使用寿命。

日本领先世界的还有大名鼎鼎的碳纤维材料。碳纤维由于质量轻,强度高而被军工产业视为制造导弹、尤其是最顶尖洲际弹道导弹的最理想材料。比如美国的“侏儒”导弹是美国的小型固体洲际战略导弹,该导弹也是目前世界上最早采用全程制导的洲际战略导弹,其中就用到了日本的新材料及技术。

比如美国的“三叉戟II”D-5型潜射导弹,曾经是世界上最先进的潜射弹道导弹。曾经被誉为美海军战略核力量的“骄子”。此导弹采用了日本的新复合材料。再比如法国M51的新式洲际弹道导弹,M51潜射弹道导弹曾经是法国原子能军需事务局和法国原子能总署研制的新一代战略核导弹。至少到2030年,以M51导弹为主体的海基核力量将成为法国核力量的主体,可巩固法国在欧洲防务独立中的领导地位。法国的导弹依然采用了日本的复合新材料。

无疑全球先进的战略导弹无一例外都采用碳-碳和碳-树脂复合材料用于制造洲际导弹的壳体和喷管。而在这项技术上日本依然是全球领先水平。比如日本东丽公司的T1000强度高达7060mpa,其拉伸模量在高强度碳纤维中也非常高(甚至达到了284Gpa),这些技术指标都远远超过了美国IM9的最高水平。

在碳纤维有机复合材料领域,前苏联国家石墨结构材料研究所、前苏联聚合物纤维研究所,全俄航空材料研究院,能够生产出拉伸强度2500~3000MPa、拉伸模量250GPa的高强度碳纤维,以及模量400~600GPa的高模量碳纤维。尤其是后期又研发出4000~5000MPa的中模量碳纤维。尽管如此,俄罗斯的碳纤维产品在性能及水平上依然没有超过日本的技术水平。

在全球碳纤维生产制造厂家中,日本拥有著名的东丽、东邦和三菱三家顶尖公司,都代表了世界最顶级技术水平。

三、美国

飞利浦集团有多强,飞利浦500强排名(3)

美国是全球新材料领域的重要领导者。北京大学数字中国研究院副院长曾经认为:美国在新能源、新材料和生命工程方面的技术水平远远领先于世界其他国家。

值得一提的是,美国曾经把新材料列为影响经济繁荣和国家安全的六大类关键技术之首。在确定的22项关键技术中材料占了5项(材料的合成和加工、电子和光电子材料、陶瓷、复合材料、高性能金属和合金)。美国的新材料发展特色是以国防部和航空航天局的大型研究与发展计划为龙头,主要以国防采购合同形式来推动和确保大学、科研机构和企业的新材料研究与发展工作。

早在2011年,美国总统奥巴马宣布了一项超过5亿美元的“推进制造业伙伴关系”计划,通过政府、高校及企业的合作来强化美国制造业,投资逾1亿美元的“材料基因组计划”(Materials Genome Initiative)是其组成部分之一。《材料基因组计划》拟通过新材料研制周期内各个阶段的团队相互协作,加强“官产学研用”相结合,注重实验技术、计算技术和数据库之间的协作和共享,目标是把新材料研发周期减半,成本降低到现有的几分之一,以以期加速美国在清洁能源、国家安全、人类健康与福祉以及下一代劳动力培养等方面的进步,大幅加强美国在新材料领域的国际竞争力。

美国重点把生物材料、信息材料、纳米材料、极端环境材料及材料计算科学列为主要前沿研究领域,支持生命科学、信息技术、环境科学和纳米技术等发展,尤其满足国防、能源、电子信息等重要部门和领域的需求。由此,美国制订了一系列与新材料相关的战略性计划,主要包括:“21世纪国家纳米纲要” 、“ 国家纳米技术计划(NNI)” 、“未来工业材料计划” 、“光电子计划” 、“ 光伏计划” 、“下一代照明光源计划”、“先进汽车材料计划” 、“化石能材料计划” 、“建筑材料计划” 、“NSF先进材料与工艺过程计划” 、“材料基因组计划”等。美国在新材料科技发展方面取得很大进展。比如在战略性新材料计划之下,早在2011年1月份,美国科学家开发出一种由超介质材料制造的声呐探测不到的“隐声衣”;3月份,高效存储氢的纳米复合材料问世;6月份,“诱导”聚合物拟肽链自我组装成纳米绳子,自组装纳米绳性能不逊于自然材料;9月份,以镱为基础材料研制出奇特的新型超导体,在自然状态就能达到“量子临界点” ;11月份,研发的超黑材料能吸收几乎所有照射在其上的光,吸收率超过99%;同月,新研发的世界上最轻的材料,其能量吸收性能与人造橡胶相仿,却比聚苯乙烯泡沫塑料还要轻100倍。

美国拥有全球众多顶尖的新材料巨头:比如埃克森美孚(ExxonMobil)、、陶氏化学(DowChemical)、杜邦公司(DuPont)、3M公司(3M)、、美铝公司(Alcoa)、美国钢铁公司(UnitedStates Steel)、7、PPG 工业公司(PPG Industries)、空气化工产品公司(AirProducts & Chemicals)、伊士曼化学公司(Eastman Chemical)、康宁公司(Corning)‘

美国拥有世界顶尖的新材料高等学府:比如著名的西北大学、麻省理工大学(材料科学与工程学院的课程排名第一)、伊利诺伊大学厄巴纳-香槟分校(由最早成立于1867年的陶瓷、冶金、矿业等系合并而来;专业分为生物材料、电子材料等6个方向;全美材料专业排名常年前三。)、4加利福尼亚大学伯克利分校(世界上最负盛名且是最顶尖的公立大)、斯坦福大学(世界上最杰出的大学之一)、加州大学圣塔芭芭拉分校(美国顶尖的以研究科学为主,且学术声望非常高的研究性公立大学。)

康奈尔大学(办学规模为当时全美高校之最)、宾夕法尼亚州立大学帕克分校(全美最大的十所公立大学之一)、佐治亚理工学院分校治亚理工学院分校(美国顶尖的理工学院。重点在研究开发下一代工程应用的材料)、美国密歇根大学(与加州大学伯克利分校以及威斯康星大学麦迪逊分校素有“公立大学典范”之称。材料专业排名非常高)

美国拥有一大批全球顶尖的研究所及领先的实验室:比如在新材料研究领域科研机构一共有210所科研机构,比如橡树岭国家实验室、阿贡国家实验室、埃姆斯实验室等17个科研实力全球名列前茅的国家实验室,以及杜邦、波音、IBM等13个顶尖科技研发公司实验室,而涉足新材料研究的主力—高校实验室如麻省理工大学、哈佛大学等则高达180所。

1、橡树岭国家实验室:主要材料研究内容:磁性材料、超导、激光脉冲烧蚀、薄膜、锂电池材料、热电材料、表面、高分子、结构陶瓷和合金基础研究。

2、布鲁克海文国家实验室:主要材料研究内容:高温超导性、磁性、固态结构与相转变、高分子导体

3、艾米斯实验室:主要材料研究内容:新机械、磁性和超导方面稀土元素的实验和理论研究。

4、阿贡国家实验室:主要材料研究内容:高温超导性、高分子超导体、薄膜磁性、表面科学。

5、劳伦斯伯克利国家实验室:主要材料研究内容:激光光谱、超导、薄膜、飞秒加工、生物高分子、高分子与复合物、表面科学以及理论研究。

6、劳伦斯利弗莫尔国家实验室:主要材料研究内容:金属与合金、陶瓷、激光材料、合金超塑性。

7、西北太平洋国家实验室:主要材料研究内容:金属和合金应力腐蚀裂纹、陶瓷材料高温腐蚀疲劳、陶瓷材料辐射效应。

8、洛斯拉莫斯国家实验室:主要材料研究内容:电子材料、微结构发展理论、使表面硬度、抗腐蚀性和耐磨性提高的等离子体浸没离子注入技术。

9、桑迪亚国家实验室:主要材料研究内容:陶瓷涂料溶胶-凝胶化学、纳米晶材料发展以及金属、玻璃和陶瓷材料表面的胶粘合润湿。

10、美国标准与技术研究院(NIST):主要材料研究内容:属于美国商务部的非监管机构。NIST共有6个实验室,分别为工程实验室、信息科技实验室、材料测量实验室、物理测量实验室、纳米科技中心、NIST中子研究中心。

11、美国航空航天局(NASA):主要材料研究内容:主要涉足新型金属材料以及高性能复合材料。

12、美国加州纳米研究中心:主要材料研究内容:纳米科学和纳米技术发现的迅速商业化研究。 CNSI开展的工作代表了纳米系统相关的研究四个目标领域包括能源,环境,健康,医学,信息技术。

13、美国国家增材制造创新研究所:主要材料研究内容:新型金属材料,增材/3D打印材料、开发梯度及可定制材料。

14、哈佛大学研究中心:主要材料研究内容:哈佛大学拥有多个材料研究中心,其中包括量子科学及工程学会、纳米系统中心、侧重不同层次生物学功能的认识、解决医疗问题的仪器和设备的生物材料研究室等。在哈佛的工程与应用科学学院,研究材料科学的教授是最多的。

15、省理工大学研究中心:主要材料研究内容:麻省理工学院则拥有科技与聚合物物理研究小组、44个生物工程方面的研究所及研究室、纳米技术实验室、先进材料实验室、专门进行金属材料等快速成型技术研究的快速成型实验室、高级材料和结构技术实验室以及正在研究4D打印的自组装实验室等材料研究部门。其中生物学与生物工程系里面的Whitehead研究所代表了全美国生物学研究的最高水平,其下设15个研究室,在生物材料研究方面主攻人类遗传学下设15个研究室,在生物材料研究方面主攻人类遗传学、基因、免疫系统、RNA等领域。

16、普林斯顿大学的化学工程部:主要材料研究内容:高分子材料研究和生物材料研究的主要据点,其材料科学与技术研究所下面有专门的复合材料研究组;

17、康涅狄格大学材料科学研究所:主要材料研究内容:该研究所材料科学方面的研究横跨金属聚合物、金属纳米材料、生物医学金属材料等领域。

18、宾夕法尼亚大学:主要材料研究内容:新型高强度、高韧性合金材料,致力于金属间化 物的基础系统研究,比如钛铝合金和银钼合金等。

19、斯坦福大学工程学院:主要材料研究内容:主要为交通运输工具设计更轻质、性能更 良好、结构更新颖的材料。

20、加州大学圣芭芭拉分校:主要材料研究内容:该学校除了拥有数个全球顶尖的纳米材料实验室,还拥有众多其它与材料研究相关的实验室,包括材料研究实验室、多功能材料和结构中心、节能材料中心、复合材料研究所、先进材料中心、国际材料研究中心等。

综上所述,之所以美国的高科技及新材料在全球如此之强,在很大程度上得益于美国对于新材料的高度重视,特别是美国新材料“产学研政”各界的有效结合。原因是新材料是科技发展的基础,只有新材料强大了,一个国家的科技才能做到真正领先。

四、德国

飞利浦集团有多强,飞利浦500强排名(4)

首页 12下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.