剪刀石头布技巧,石头剪刀布的正确方法视频

首页 > 家居 > 作者:YD1662023-04-15 03:33:41

剪刀石头布技巧,石头剪刀布的正确方法视频(1)

| quantamagazine

导语

现实生活中许多情况都可以看作是在“博弈”,而达到纳什均衡在某种意义上对所有玩家都是积极的结果。本文首先条分缕析了纳什均衡在小游戏中的体现,又对其进行了扩展延伸探讨,更复杂的情况下,“看不见的手”究竟会如何影响你的决策呢?

生活中,我们常用剪刀-石头-布的猜拳游戏来决定谁去做清洁劳动等等,但是,你有没有注意到当你一轮一轮地进行游戏时到底发生了什么?

起初,你可能处于上风,然而,你的对手可能会让游戏又转向对她有利的一面。随着游戏的进行,你们实施着各自的策略,直到最终所有玩家似乎都不能通过改善个人策略而获得更多的胜利。

这是为什么呢?

纳什均衡

其实,早在1950年,数学家约翰·纳什(John F. Nash Jr. )就向我们证明,在任何拥有有限参与者和有限策略的游戏(例如,剪刀-石头-布)中,总是存在这样的混合策略:使得在该策略下没有任何参与者可以通过仅改变自身策略而提高收益。

后来,这种稳定的策略组合被人们称为“ 纳什均衡 ”。它不仅促进了传统的博弈论领域的革新,改变了经济学的进程,也改进了人们在政治条约、网络交通等诸多方面的研究分析方法。而纳什也因此获得了1994年诺贝尔奖。

纳什均衡可行性分析

1994年诺奖获得者John F. Nash Jr. 传记

那么,纳什均衡在剪刀-石头-布的游戏中又是如何体现的呢?

剪刀石头布技巧,石头剪刀布的正确方法视频(2)

| Fishfinger Creative Agency

纯(pure)策略

让我们模拟你(玩家A)和对手(玩家B)来简单分析一下。其中,玩家每轮胜出得一分,失败则丢掉一分,平局记零分。

现在,假设玩家B首先采用一种(愚蠢的)战略,即每回合都出布。那么,经过几轮的游戏之后,你可能就会发现她的策略并采取每回合都出剪刀的策略来反击。我们将这种策略组合记为(剪刀,布)。如果每一轮以这样的策略组合进行,毫无疑问你将取得胜利。

但是,玩家B很快也会发现自己在这样的策略组合中的劣势。当她观察到你总是出剪刀应对时,她也转而采用总是选择石头的策略。这个策略组合(剪刀,石头)中B又开始赢得胜利。当然,你也可以继续针对新的策略组合而选择出布。

在上述游戏过程中,玩家A和B采用了所谓的“纯”(pure)策略,即选择并重复执行单一的策略。

对于任何纯策略,例如“总是选择石头”,我们都可以采用对立的策略应对,例如“总是选择布”。此时,相关的策略也将再一次发生变化。于是,你和你的对手将永远围绕策略圈互相追逐。

显然,这样的纯策略是不存在平衡点的。

混合策略

当然,你也可以尝试“混合”策略。假设你可以在每轮游戏中随机选择一种策略,而不是一直只选择一种策略。例如,你可以并不“总是选择石头”,而是“一半时间出石头,另一半时间出剪刀”,等等。

纳什证明,当允许这样的混合策略时,每个这样的游戏将至少存在一个平衡点。那么,我们现在来举例说明一下。

首先,我们需要了解,在剪刀-石头-布的游戏中,究竟怎样的混合策略才是合理的呢?例如,我们可以假设“游戏中以相同的概率选择剪刀、石头或布”,那么对应的策略组合表示为(1/3,1/3,1/3),即剪刀、石头或布被选中的概率均为1/3。这会是一个好的策略吗?

好吧,假设你的对手策略是“总是选择石头”这样的纯策略,我们用(1,0,0)表示。那么,在A选择(1/3,1/3,1/3)且B选择(1,0,0)的策略组合中,游戏的结果将会如何呢?

为此,我们绘制如下表格,其中列出了每轮游戏中九种可能的组合结果(例如,A出石头,B出石头; A出石头,B出布,等等)对应的概率。其中,第一行表示玩家B的选择,第一列表示玩家A的选择。

剪刀石头布技巧,石头剪刀布的正确方法视频(3)

本文所示图中R-石头,P-布,S-剪刀,后文不再赘述

表中展示了任意轮次中策略组合的概率,即双方各自策略对应概率的乘积。例如,玩家A选择布的概率为1/3,而玩家B选择石头的概率为1,那么(A选择布,B选择石头)的概率为1/3×1=1/3;而(A选择布,B选择剪刀)的概率则是1/3×0=0,因为玩家B选择剪刀的概率为零。

那么,在这样的策略组合中,玩家A的表现究竟如何呢?从表中我们可以看到,玩家A将在三分之一的时间取胜(布,石头),三分之一的时间失败(剪刀,石头),另外三分之一的时间打平(石头,石头)。并且,我们可以通过计算每个结果与其相应概率的乘积的总和来得到玩家A每轮的平均得分:

剪刀石头布技巧,石头剪刀布的正确方法视频(4)

首页 1234下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.