线性代数学习诀窍,如何快速学线性代数

首页 > 教育 > 作者:YD1662023-04-19 16:16:26

更多深度文章,请关注云计算频道:https://yq.aliyun.com/cloud


作者介绍:Brendan Fortuner 是一名在西雅图的亚马逊的软件工程师,目前自己在人工智能方面进行研究。

线性代数学习诀窍,如何快速学线性代数(1)

上过Jeremy Howard的深度学习课程后,我意识到我在线性代数方面的不足,而这大大影响我对类似反向传播这样的概念的理解。因此我决定在这个方面花点时间,以补全这方面的知识。本文是对线性代数的基本介绍,用于深度学习中会使用到的一些常见的线性代数操作。

什么是线性代数?

在深度学习的背景下,线性代数是一个数学工具,它提供了有助于同时操作数组的技术。它提供了像向量和矩阵(电子表格)这样的数据结构用来保存数字和规则,以便进行加,减,乘,除的运算。

线性代数为什么有用?

线性代数可以将复杂的问题简单化,让我们能够对问题进行高效的数学运算。以下是线性代数如何达到这些目标的一个例子。

# Multiply two arrays

初始化这两个数组后,用线性代数的方法会快3倍。

如何在深度学习中使用线性代数?

神经网络将权重存储在矩阵中。线性代数使矩阵运算变得更加快捷简便,尤其是在GPU上进行训练的时候。实际上,GPU是以向量和矩阵运算为基础的。比如,图像可以表示为像素数组。视频游戏使用庞大且不断发展的矩阵来产生令人炫目的游戏体验。GPU并不是处理单个像素,而是并行地处理整个像素矩阵。

向量

向量是1维数组。在几何中,向量将大小和方向的潜在变化存储到一个点。例如,向量[3,-2]表示向右移3个单位距离和向下移2个单位距离。而具有多个维度的向量称为矩阵。

向量表示

我们可以以不同的方式来表示向量。这里有几个常见的表示方式。

线性代数学习诀窍,如何快速学线性代数(2)

几何中的向量

向量通常表示从一个点出发的运动。它们将大小和方向的潜在变化存储到一个点。向量[-2,5]表示左移2个单位,向上5个单位。参考资料。

线性代数学习诀窍,如何快速学线性代数(3)

向量可以应用于任何空间点。向量的方向就是向上5个单位和向左2个单位的斜线,它的大小等于斜线的长度。

标量操作

标量运算涉及向量和某个数字。我们可以通过对向量中的所有项进行加,减,乘,除操作来对其进行修改。

线性代数学习诀窍,如何快速学线性代数(4)

首页 12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.