世界数学七大难题解开有什么用,世界七大数学难题是哪几个

首页 > 教育 > 作者:YD1662024-04-19 02:09:14

2000 年,美国克莱数学研究所公布世界七大数学难题,又称千年大奖问题,每一难题的破解者将颁发一百万美元的奖金。其中 P 与 NP 问题被列为这七大数学难题之首。

世界数学七大难题解开有什么用,世界七大数学难题是哪几个(1)

1.NP完全问题

例:在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。宴会的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现宴会的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。

生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13717421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。

人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题,存在一个确定性算法,可以在多项式时间内,直接算出或是搜寻出正确的答案呢?这就是著名的NP=P?的猜想。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克于1971年陈述的。

世界数学七大难题解开有什么用,世界七大数学难题是哪几个(2)

NP完全问题最新情况:2010年8月7日,来自惠普实验室的科学家Vinay Deolalikar声称已经解决了"P/NP问题" ,并公开了证明文件。

2.霍奇猜想

二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导致一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

世界数学七大难题解开有什么用,世界七大数学难题是哪几个(3)

霍奇猜想的解决

黎曼假设、庞加莱猜想、霍奇猜想、贝赫和斯维讷通-戴尔猜想、纳维叶―斯托克斯方程、杨―米尔理论、P问题对NP问题被称为21世纪七大数学难题。2000年5月,美国的克莱数学研究所为每道题悬赏百万美元求解。目前,这一难题仍没有被破解。

对于(1,1)类的霍奇猜想已经在霍奇本人提出本猜想前的1924年由 Lefschetz证明。换句话说,霍奇猜想对于H^2成立。实际上,这是霍奇提出其猜想的动机之一。除此以外,还成立以下定理:如果霍奇猜想对于度数p的霍奇类成立,其中p<n,n是上述射影代数簇的维数,那么对于度数为2n-p的霍奇类,霍奇猜想也成立

3.庞加莱猜想

如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。

世界数学七大难题解开有什么用,世界七大数学难题是哪几个(4)

首页 123下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.