风冷螺杆热泵全热回收机组:
在原机组上增加热回收换热器,热回收换热器同空调水侧热交换器采取并联方式。
当夏季运行时,通过热回收换热器、水侧热交换器、风侧热交换器三者之间通过控制实现相互切换,可实现制冷加上热回收、热泵热水器、制冷三种模式。
当过渡季节运行时,通过风侧热交换器和热回收侧换热器实现热泵热水器运行模式。
当冬季运行时,通过风侧热交换器和空调水侧热交换器实现空调制热模式,通过热回收侧换热器和风侧热交换器实现热泵热水器模式,这种模式可通过设定分时启动。
热回收机组原理:
四种运行模式如下:
(1)制冷模式:制冷剂通过电磁阀3、四通换向阀4、风侧热交换器5,经过单向阀7、过滤器13、电子膨胀阀10、电磁阀11、单向阀12、水侧热交换器6 及四通换向阀4,最后流回压缩机1,完成整个制冷循环。这种运行模式同普通空调机相同,仅提供空调用冷水。
(2)制冷加热回收模式:制冷剂经电磁阀2、热回收换热器6、单向阀18、储液器15、单向阀14、过滤器13、电子膨胀阀10、电磁阀11、单向阀12、水侧热交换器6及四通换向阀4,最后流回压缩机1,完成整个循环。这种模式下机组在提供冷水的同时可提供生活及工业用热水。
(3)热泵热水器模式:制冷剂经电磁阀2、热回收换热器6、单向阀18、储液器15、单向阀14、过滤器13、电子膨胀阀10、电磁阀9、单向阀8、风侧热交换器5及四通换向阀4,最后流回压缩机1,完成整个循环。这种模式下机组仅仅提供生活或工业用热水,对于不开空调的过渡季节可通过这种模式来产生热水。
(4)制热模式:制冷剂经过电磁阀3、四通换向阀4、水侧热交换器16、单向阀17、储液器15、单向阀14、过滤器13、电子膨胀阀10、电磁阀9、单向阀8、风侧热交换器5及四通换向阀4,最后流回压缩机1,完成整个循环。这种运行模式同普通空调相同,仅提供空调用热水。
全热回收水系统设计:
在空调系统中,通常情况下冷负荷的变化与热负荷的波动并不同步。对于全热回收型冷水机组,只有机组一直处于满负荷运行,才能够提供达到设计温度的热回收中温水。所以,对于全热回收水系统,设计的关键在于满足系统空调负荷要求的同时,确保热回收冷水机组优先满负荷运行。
1.热回收冷水机组优先并联系统
在热回收冷水机组优先并联系统(见图2)中,热回收冷水机组被置于旁通水管前(负荷侧)。这样,即使在部分负荷时,进入热回收冷水机组的冷水回水也不和旁通冷水供水混合,故而水温一直保持最高。在二次泵系统中,冷水主机定流量工况运行,热回收冷水机组的进水温度最高,故热回收冷水机组在运行中处在优先满负荷状态。
热回收冷水机组与其他常规冷水机组在同一系统中同时使用时,为了避免机组喘振以及获得较高的热回收出水温度,必须设定合适的机组加减顺序。空调系统的末端负荷持续波动时,采用常规控制的系统的冷水机组将均匀加、减载,导致热回收冷水机组的负荷率持续变化,最终造成热回收水温的波动。在极低的负荷率下,如果热回收冷水机组依旧保持高的热回收侧温度(即冷凝温度),离心式热回收机组极易发生喘振。所以,在热回收冷水机组和常规冷水机组混用的系统中,控制系统设计的基本原则是当系统空调负荷增加(减少)的时候,优先加载(减载)常规冷水机组,尽量保证热回收冷水机组满负荷运行。
如果热回收冷水机组蒸发器的水流量可以变化,那么通过安装变频冷水泵(热回收侧的热水循环泵也采用变频泵),也能获得达到设计温度的热回收水。如果热回收冷水机组优先加载,不但能够提供系统所需的空调冷水,而且不会把加载产生的冷凝热排给冷却塔。需要指出的是,热回收冷水机组的冷水泵采用变频水泵时,它与其他机组的水力平衡非常重要。
热回收冷水机组并联系统比较适用于热回收冷水机组与系统中其他冷水机组冷量相差不超过50%的系统。
2.热回收冷水机组旁流系统
热回收冷水机组旁流系统(见图3)是指回水管中的回水一部分先通过热回收冷水机组,再进入单制冷冷水机组的热回收冷水机组系统。从整个系统来看,热回收冷水机组和单制冷冷水机组为串联连接,热回收冷水机组在热回收的同时,可以降、低单制冷冷水机组的进水温度。热回收热量的调节可以通过调整旁流冷水机组进出水温度及流量来实现。旁流冷水机组的负荷率降低,机组产生的冷凝热随之减少。该系统设计灵活,热回收冷水机组大小不受限制。
需要指出的是,单制冷冷水机组的水泵流量之和要能满足整个系统的水流量要求。当热回收冷水机组和单制冷冷水机组同时运行时,单制冷冷水机组的进、出水温差要比单独运行时的温差小。热回收冷水机组的水泵扬程只需要克服机组蒸发器以及从机组到回水干管的阻力损失即可。
旁流系统的优点是,旁流热回收冷水机组不需要提供设计温度的冷水,即旁流机组的出水温度可以高于系统的设计冷水供水温度,适当提高冷水出水温度,可以提高机组的运行效率,弥补由于热回收而产生的效率损失。另外,采用旁流系统,能够降低单制冷冷水机组的进口水温,减小进、出口水温差,有利于提高单制冷冷水机组的制冷效率。整个系统在获得同样温度的空调冷水、热水时,有着更高的运行效率。
与热回收冷水机组优先并联系统相比,热回收冷水机组旁流系统不受冷水机组额定冷量差异的限制,各种机型可以随意搭配,系统控制逻辑较为简单,特别适用于全年冷负荷波动较大、热回收冷水机组和常规冷水机组冷量差距大的项目中。此外,旁流系统还可以用在一次泵变流量系统中。由于单制冷冷水机组和热回收冷水机组串联运行,故在变流量工况下不存在机组间的水力平衡问题,一次泵变流量系统无须采用一机一泵的连接方式,并且水泵运转只和系统中循环水流量相关,从而更加适合旁流系统。如果采用一次泵变流量旁流系统,则整个系统的节能效果将更加明显。
热回收冷水机组应用需注意的问题:
冷却热回收对于降低运行费用、减少热排放是一个行之有效的方法。近些年来,冷却热回收得到了越来越广泛的应用。在热回收应用中,有以下问题需要注意。
1)应用热回收冷水机组首先要计算、比较系统的耗能。热回收冷水机组在应用中经常会步入“抓小漏大” 的误区—为了获得貌似免费的热水,而忽略由于采用热回收带来的冷水机组的制冷效率下降。所以,确定采用热回收冷水机组前,应该进行热回收冷水机组与常规冷水机组 热水锅炉系统的能耗计算与比较。
2)选择合适的热回收热水温度。如果为了获得较高的热回收水温而提高机组的冷凝压力,将大大降低机组的制冷效率,同时冷凝压力的提高,使得机组冷凝器承压要求提高,将大幅度增加机组造价。
3)为了保护热回收冷水机组,在设计的时候即使采用全热回收,也建议配置冷却塔,其散热量为机组的全部冷凝热,避免热负荷减少时机组因为冷凝不足而产生喘振。
4)根据系统全年的冷、热负荷选择系统形式。
热回收冷水机组的设计热回收量只能在设计工况下获得。通常系统的热负荷和冷负荷工况并不同步,需要选择合适的系统形式以确保适量的热量回收。
5)设计热回收系统时,要做好自控设计。只有良好的系统设计加上准确的自动控制设计,才能够保证系统安全、良好地运行。
本文素材来源于互联网,部分作者:林晓丽。暖通南社整理编辑。