而pandas中很多函数并不支持None的运算,因为尽量将None转换为NaN。
OK,折腾了半天,实验就到这里了,总体来说,区别它们还是很费心力的,而且还有很多复杂的情况存在,以及个别特殊情况的需要处理。这里老海就不在一一展开了。
总之,在实际使用中,老海建议遵守三个法则,来保证特殊值一致性法则1:在导取数据后,我们第一时间把空字符替换为None、NaN或者NULL
法则2:在使用pandas或者numpy时,我们将None统一替换为NaN
法则3:在数据导入数据库时,我们将NaN统一替换为None
以上法则,也是根据日常处理特殊值经验而来,不一定适用于所有情况,优点是简单直接便于记忆,也可尽量避免后期出现数据转换带来的困扰。
OK,今天就到这里。喜欢老海的分享,请关注留言和转发,我是数据炼金师,老海