【数据处理】→【生成变量】里的排名功能。点击“综合得分”,再选择“排名(Rank)”,点击确认处理。
右上角“我的数据”也可以将数据进行下载。
其它说明1. 提示出现奇异矩阵?
如果提示出现“奇异矩阵”,通常情况下由于分析样本量太少(比如分析项有20个,分析样本仅10个),此里需要加大样本量或者减少分析项即可;以及还有一种情况是分析项之间的相关性非常非常弱或者非常非常强,此时需要移除掉相关性非常弱或者非常强的分析项(使用相关分析进行检查相关关系)。
2. ‘分析之前是否需要对数据进行标准化处理’?
SPSSAU默认就已经进行过标准化处理,因此不需要再对数据处理。当然标准化后的数据再次标准化依旧还是自身没有任何变化,结果永远均一致。
3.综合得分如何使用?
SPSSAU默认可保存综合得分(以及因子得分等);一般该值越大表示越有竞争力等;研究者通常需要把综合得分的具体数据下载后使用,并且在EXCEL进行排序(也可使用SPSSAU生成变量里面的排序功能)。 通过右上角我的数据可下载具体综合得分的具体数据等。
4.特征根值没有大于1可以吗?
主成分分析时通常需要综合自己的专业知识,以及软件结果进行综合判断,即使是特征根值小于1,也一样可以提取主成分。
5.主成分回归是什么意思?
进行主成分时,选择保存‘成分得分’,然后利用系统生成的‘成分得分’数据进行线性回归,即为主成分回归。
6.累积方差解释率出现100%以上如何办?
正常情况下,累积方差解释率会小于100%,但如果数据的共线性问题太严重,有可能出现方差解释率值大于100%,此时建议进行相关分析,找出相关性太强(比如相关系数大于0.8)的项,然后从分析框中移出后再次分析。与此同时,如果样本量太少也可能出现此问题建议加大样本量即可。
7. KMO值过低?
一般需要KMO值大于0.6即可,如果是两个分析项,KMO值一定是0.5;因而建议删除掉共同度(公因子方差)值较低项,这样可以提升KMO值。
如果不输出KMO值,意味着数据质量过差,建议可使用相关分析看下相关关系,如果相关系数值基本均小于0.3(或者没有呈现出显著性),则说明题项间关联性弱,则KMO值一定会较低,建议先移除相关系数值较低项后再次分析。
提示:KMO值综合衡量分析项间的信息重叠情况(即分析项之间的相关关系情况)。分析项之间的相关系数过低(比如小于0.2或没有显著性),信息重叠度低无法有效浓缩信息,这会导致KMO值较低,如果分析项之间的相关系数过高(比如大于0.8),这会导致严重共线性可能无法输出KMO值。分析项之间的相关系数值一般希望介于0.3~0.7之间较好。
总结主成分分析的原理在于信息浓缩,对于信息浓缩的帮助越大,指标权重可越大,正是利用此原理,可进行指标权重的计算。主成分分析的作用更多侧重于计算权重、计算综合竞争力。不会过多关注主成分与分析项对应关系,不要求每个主成分有明确的含义。
,