3)包裹体杂质与石英分离:与物理选矿相比,化学处理去除杂质的效率更高,酸可在微裂缝和晶界 内深度渗透的优势可更好地处理包裹体和晶格类型的杂质。酸洗、浸出和热氯化是三种主要的化学 处理工艺。酸洗和浸出对包裹体杂质处理效果较好,而热氯化可以清除较难处理的晶格杂质。酸洗 是使用盐酸或硫酸等溶解力较低的酸,而浸出则使用高温的氢氟酸,以最有效地去除表面游离杂质 和富集在微裂纹和沿位错的杂质。
①矿物包裹体混合酸溶解:矿物包裹体混合酸溶解利用石英只能溶解在氢氟酸中,而其他矿物包裹 体杂质能被酸溶解的特点,实现石英与杂质的分离,常用的酸有硫酸、盐酸、硝酸、氢氟酸等。天 然石英矿物中杂质种类多且存在形式复杂,使用混合酸溶解石英中矿物包裹体杂质对石英砂提纯效 果最佳。混合酸溶解矿物杂质被认为是高纯石英加工过程中最重要环节之一,在矿物杂质被溶解的 同时也可能脱除石英中的晶格杂质。但混合酸溶解矿物杂质反应程度低、过程缓慢,不仅消耗了大 量时间和酸溶液,同时也造成了严重的环境问题。
②流体包裹体高温爆裂:石英在高温焙烧过程中,随着温度升高当流体包裹体内部压力大于石英对 包裹体束缚压力时,流体包裹体发生突然爆裂内部杂质得以释放,再经后续酸清洗可以溶解流体包 裹体内部杂质。
③氯化脱气:氯化脱气是将石英加热到 1000-1500℃并通入 Cl2、HCl 或混合气体的高温处理方法,不 仅可以使金属杂质元素在高温下生成气态氯化盐挥发出来,更对石英中的流体包裹体有一定的脱除 效果。其原理为:高浓氯气作用下,石英颗粒表面与内部会存在促使流体包裹体向外扩散的化学位 梯度,进而脱除了石英中的气液包裹体和羟基。
4)晶格杂质脱除:氯化脱气除了有助于脱除流体包裹体外,也有助于脱除晶格杂质。其原理为:1500℃ 高温时,石英向方石英相转化,会发生键的断裂和*,石英晶格发生膨胀,有利于金属杂质元素 向石英表面迁移扩散。相比于真空气氛焙烧,氮气气氛焙烧时石英向方石英转化率更大,石英晶格 杂质元素迁移扩散效率可能更高。石英中的杂质组分与氯化剂作用转变为氯化物而挥发出来,石英 在高温氯化焙烧过程中存在晶型转变,使得石英晶格中的金属离子可能会迁移扩散到石英表面,与 HCl、NH4Cl 和 Cl2等发生化学反应变成易挥发组分而实现与石英的分离,同时也阻止了杂质元素在冷 却过程再迁移扩散至石英晶格中。
化学合成高纯石英:高纯石英砂潜在量产新技术
合成石英砂崭露头角:随着全球范围内天然水晶和高品质石英矿脉的逐渐枯竭,化学合成生产高纯 石英得到重视。此外,合成石英材料因为其纯度更高、光学性能更良等特性,除了在高端光学领域 得到广泛应用以外,也符合半导体制程对石英制品高纯、无污染、耐高温的要求,尤其是随着半导 体芯片线宽越来越窄,普通的天然石英材料已经无法满足高端生产工艺的要求,合成石英成为 10nm 制程以下的半导体芯片刻蚀环节中的重要部件。光掩模版需求旺盛,也带动合成石英材料的需求。 目前全球高纯合成石英材料主要生产企业包括美国康宁公司、德国贺利氏、日本东曹株式会社、日 本信越石英株式会社以及国内的菲利华。(报告来源:未来智库)
目前,制备高纯合成石英的技术路线主要有四种,即气相合成法、化学沉淀法、溶胶-凝胶法、四氯 化硅液相水解法:
1)气相合成法:即火焰水解法,与气相白炭黑工艺类似,其原理是采用硅或有机硅的氯化物(如 SiCl4 或 CH3SiCl3等) 作为原料,将其气化后与氢气、氧气混合,在高温下发生水解形成雾状的 SiO2,最 后通过冷却、分离、脱酸等气固分离得到产品。 该法得到的产品为气相 SiO2,粒径小于 100nm,外 观蓬松多孔,比表面积大,化学纯度高,分散性较好。 工艺特点:生产流程简单,合成条件易控制,反应速度快,适合大规模生产;由于过程中需要高温 环境,反应生成的 HCl 会严重腐蚀设备,因此对生产设备的材质、加热形式等要求比较严格。 由于 气相法耗能大,加工成本较高,还需在反应条件与设备选型等方面进一步探讨和研究。
2)化学沉淀法:化学沉淀法是合成石英粉体较为广泛的方法之一,目前技术已经成熟,已用于工业 化生产。 沉淀法生产 SiO2的原理:采用硅酸钠与二氧化碳或酸溶液(加盐酸、硫酸或硝酸)作为原 料,在一定的合成温度和表面活性剂的作用下混合反应,得到偏硅酸沉淀,再经过滤、洗涤、干燥、 煅烧工序制备出 SiO2。 工艺特点:该生产工艺具有操作方便,生产流程简单,原料易得,能耗和投资低等优点;但是 Fe3 、 Al3 、Ca2 等杂质的存在会导致凝块的形成,严重影响产品的质量,导致产品性能差、纯度低、粒径 大、易发生团聚;也存在反应体系的浓度较低、沉淀速度快、沉淀过程不易控制的缺点;另外,废 酸、废水的处理给环境带来一定的破坏。
3)溶胶-凝胶法:溶胶-凝胶法是以无机盐或者金属醇盐(一般为硅酸乙酯)为原料,以醇作为共溶 剂,加入酸或碱溶液作为催化剂,进行水解,缩聚反应形成 SiO2凝胶,过滤并对凝胶中的有机溶剂 进行洗涤,干燥、煅烧得到 SiO2粉体。采用该方法制备 SiO2,生产流程简单,合成条件易控制,对 设备材料的要求不严格,且过程中无其他添加剂,所以制备出的 SiO2 纯度较高、均匀度好、比表面 积大, 但是成本较高,生产周期长,工业化价值不大;另外,因为实验过程中可变因素较多,不能 达到准确控制(如水解体系、干燥方式及烧结途径等),目前只停留在实验室小试阶段。
4)四氯化硅液相水解法:其原理是 SiCl4与纯水接触发生水解或缩聚反应,之后将反应产物经洗涤、 过滤、干燥、煅烧、筛选等流程,制备 SiO2粉体。 采用 SiCl4液相水解法制备高纯石英粉,由于原料 中不含碳,故制备得到 SiO2 粉体纯度较高、羟基含量较低。 但是,在规模化生产过程中,四氯化硅 与水发生的水解和缩聚反应剧烈,中间过程难以管控,粉体易团聚,形成的石英粉致密度较低。 因 此,为了满足产业化生产,该法仍需更深入地探究其工艺控制(如水解控制、干燥及烧结过程等), 有效减少颗粒团聚现象的发生。
高端制造支撑,高纯石英砂需求无忧高纯石英砂主要应用于半导体、光伏、光通讯和电光源领域:根据智研咨询数据,2012-2019 年,全 球高纯石英砂消费量由 73.35 万吨增长到 121.44 万吨,年化复合增速为 7.47%。其中,半导体、光伏、 光通讯、电光源等领域对高纯石英砂的需求较大。2019 年全球消费高纯石英 121.44 万吨,其中用于 半导体领域消费 79.30 万吨,占比 65.30%;光通讯领域消费 17.97 万吨,占比 14.80%;光伏领域消费 14.52 万吨,占比 11.93%;电光源领域消费 4.74 万吨,占比 3.90%;其他领域消费 4.91 万吨,占比 4.04%。 半导体、光伏、光通讯、电光源等战略性新兴产业领域约占消费量的 96%。
全球脱碳支撑光伏终端需求较快增长,石英坩埚用高纯砂需求空间广阔
全球光伏新增装机有望快速增长
全球“脱碳”支撑中长期需求:当前,尽快实现碳中和已成为全球共识,在拜登就任以后,美国已重 新加入巴黎协定,计划投入 2 万亿美元在交通、建筑和清洁能源等领域,在政治上把气候变化问题 纳入美国外交政策和国家安全战略,继续推动美国―3550‖碳中和进程,即 2035 年电力部门实现碳中和, 2050 年实现 100%清洁能源,实现净零排放;近期美国《重建更好法案》通过众议院表决,光伏 ITC 政 策延长至 2026 年并首次适用于储能资产,PTC 恢复且风电保持全额抵扣至 2026 年,有望刺激美国新 能源发电装机进入高增长通道。根据美国能源署能源数据管理局(EIA)最新发布的预期,美国将在 2022-2023 年部署 38.3W 新增太阳能发电装机。欧盟委员会提出到 2050 年欧洲在全球范围内率先实现 碳中和,同时为 2030 年设定了减排中期目标,其温室气体排放量至少要比 1990 年的排放水平减少 55%。2022 年 5 月,欧盟委员会提出 REPower EU 方案,计划到 2025 年,光伏累计装机量达到 320GW, 到 2030 年光伏累计装机量达到 600GW。根据欧盟委员会最新的能源战略,SolarPowerEurope 认为乐观 预期,2030 年欧盟有望实现 1TW(1000GW)的太阳能发电总装机。日本首相菅义伟则于 2020 年 10 月 宣布日本将于 2050 年前实现碳中和。随着全球主要经济体进入―脱碳‖周期,预计全球新能源发电新 增装机量有望维持稳定增长。
高纯石英砂是石英坩埚核心原材料,其纯度显著影响拉晶效果
高纯石英砂在光伏领域的应用为制造石英坩埚:石英坩埚是光伏领域高纯石英砂的主要制品,主要 应用于支持高温条件下连续拉晶,是用来装放多晶硅原料的消耗型石英器件。石英坩埚具有洁净、 同质、耐高温等性能。从物理热学性能上看,石英坩埚的形变点约为 1100℃,软化点约为 1730℃, 其最高连续使用温度约为 1100℃,短时间内可达到 1450℃,其高纯和高耐温耐久性为单晶拉制以及 单晶品质提供保障,是单晶拉制系统的关键辅料之一。