回归分析法的基本知识,回归分析的详细步骤

首页 > 教育 > 作者:YD1662024-05-15 14:16:53

为了理解回归背后的动机,让我们考虑以下简单的例子。 下面的散点图显示了2001年至2012年美国大学毕业生的数量。

回归分析法的基本知识,回归分析的详细步骤(1)

现在根据现有的数据,如果有人问你2018年有多少名大学毕业生获得硕士学位呢? 可以看出,具有硕士学位的大学毕业生数量几乎与年份呈线性增长。 因此,通过简单的视觉分析,我们可以粗略估计该数字在 200万 到 210 万之间。 我们来看看实际数字。 下图绘制了从 2001 年到 2018 年的同一变量。可以看出,我们的预测数字与实际值大致相符。

回归分析法的基本知识,回归分析的详细步骤(2)

由于这是一个比较简单的问题(将一条线拟合到数据),我们的大脑很容易就能做到这一点。 这种将函数拟合到一组数据点的过程称为回归分析(regression analysis)。

推荐:用 NSDT设计器 快速搭建可编程3D场景。

1、什么是回归分析?

回归分析是估计因变量和自变量之间关系的过程。 简而言之,这意味着将选定函数族中的函数拟合到某个误差函数下的采样数据。 回归分析是机器学习领域用于预测的最基本工具之一。 使用回归,你可以在可用数据上拟合函数,并尝试预测未来或保留数据点的结果。 这种功能拟合有两个目的。

回归分析的一些现实示例包括根据房屋特征预测房屋价格、预测 SAT/GRE 分数对大学录取的影响、根据输入参数预测销售、预测天气等。

让我们考虑一下前面大学毕业生的例子。

回归分析法的基本知识,回归分析的详细步骤(3)

我们想要估计其间所有缺失年份的大学毕业生人数。 我们可以通过将一条线拟合到有限的可用数据点来做到这一点。 这个过程称为插值(interpolation)。

回归分析法的基本知识,回归分析的详细步骤(4)

首页 12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.