放大器电路结构,放大器电路图解大全

首页 > 教育 > 作者:YD1662024-06-05 21:36:53

运算放大器作为常见的模拟电路模块,设计好运算放大器对于模拟电路设计入门具有很好的帮助,学好运算放大器的电路设计和不同参数如静态工作点、小信号增益Gain,相位裕度PM、输入阻抗Rin、输出阻抗Rout、环路增益loop gain和环路PM、共模抑制比CMRR、噪声Noise、电源抑制比PSRR、大信号压摆率SR、瞬态仿真tran、稳定性零极点分布仿真PZ、输入输出电压范围….等参数的仿真设置和仿真对于运放的学习具有重要的指导作用,本篇主要总结运算放大器相关的仿真设置和作者在仿真过程中的总结。

放大器电路结构,放大器电路图解大全(1)

图1 差分输入单端输出运放

图1便是常见的两级差分输入单端输出的两级运放,第一级采用电流镜作为负载将输入

电压转换为电流后又通过负载电阻转换为电压给输出级进行提供静态工作点和传递小信号电压,第二级首先将小信号电压转转换为电流后,后又在输出高阻态下重新转换为电压信号;该种结构的重要优点就是输出级采用class-AB的输出方式具有较宽的电压输出范围,一般把输出电压的静态工作点设置在电源电压的一半也是为了保证输出电平具有较宽的范围,此种运放在稳定性方面为了提高相位裕度PM常常在第一级与第二级放置极点分离电容,分离第一级与输出端的极端距离实现较高的PM,或者在第一级与第二级间放置电阻与电容串联的LHP零点用来补偿极点实现较高的PM。

放大器电路结构,放大器电路图解大全(2)

图2 差分输入差分输出两级运算放大电路原理图

图2是常见的PMOS输入的差分输入差分输出的两级运算放大电路的原理图,其中第一

级采用恒流源作为负载,第二级采用class-AB输出结构为了提高输出电压范围,与图1差分输入单端输出结构相比,图2电路增加了共模负反馈电路CMFB用于抑制两个支路共模电平的稳定和一致性,具体原因可以参考拉扎维、艾伦、格雷教授的模拟CMOS集成电路书中对这部分有具体的讲解;CMFB电路对输出电压进行采集并将输出结果负反馈给第一级电流源作为静态偏置用于调节第一级和第二级两个支路电平的稳定。差分输入差分输出电路在实际系统中采用较多,主要是因为与图1电路相比其输入不仅可以对共模信号进行抑制,在输出级也可以抑制共模电平,将会增加系统的整体性能。

在我们一开始学习运算放电路的时候,我们常常会拿到图1和图2运放电路图仿真其小信号特性中的幅频特性和相频特性,判断电路的稳定性;然而实际情况下,图1和图2为开环的运算放大器电路并不存在稳定性问题,那我们为什么还要仿真并计算出电路的增益Gain和PM(相位裕度)?这部分主要回答这个问题,在回答这个问题前,我想说下运放的实际使用过程中我们大部分都是让其工作在负反馈的闭环状态,

这主要是因为普通的运算放大器具有较高的小信号开环增益,其实际在固定的电压下具有较小的线性工作范围,如果超出其输入范围输出的电压不是高电压就是低电压,因此实际使用过程中均是使用运算放大器结合不同的输入和输出反馈类型形成闭环工作,实现较高精度的运算电路如加,减,乘除等这便是利用增益换取精度带来的结果,这也扩大的放大器的使用范围,让其成为模拟电路最重要的模拟单元模块。接下来便会介绍负反馈系统以及运算放大器在负反馈系统中的稳定性相关问题。

放大器电路结构,放大器电路图解大全(3)

图3 常见的负反馈系统框图

图3为常见的负反馈系统框图,主要包括首先输入信号经过H(s)单元进行放大,然后经过反馈单元G(s)进行一定程度衰减后与输入进行相减再进一步放大,通过负反馈的作用,输出信号最终动态稳定在一个固定的数值上,而不是放大到电源电平电压或者地电平,图3中系统的传输函数如下:

放大器电路结构,放大器电路图解大全(4)

首页 12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.