根据Barkhausen’s 判据如果系统传输函数中G(s)H(s)=-1整个传输函数将会趋于∞系统将会处于不稳定系统,该判据具体产生不稳定表达如下:
即如果在一个频率上G(s)H(s)相位发生了180度移动,并且如果此时系统的G(s)H(s)的幅度为1整个负反馈系统将会发生振荡现象,因此为了避免上述情况的产生我们常常是的在G(s)H(s)增益为1的时候观察此时相位与180度相位差定义为PM,如果此时PM大于零可以认为系统处于稳定状态,但是在实际使用过程中考虑PM较低将会对输出信号上升时间、过冲等问题带来较大的影响,我们常常在设计过程中使得PM>45度作为我们负反馈系统设计的目标。在实际的运算放大器负反馈系统的过程中我们常常定义H(s)为运放的开环增益用Aopen loop代替,G(s)作为反馈电路电源常常使用ß代替,G(s)H(s)我们常常称为环路增益loop Gain,整个负反馈系统的传输函数称为系统的闭环增益Aclose loop,接下来将会介绍在运算放大器电路中开环增益、环路增益、开环增益所代表的具体含义和区别。
- 开环增益、环路增益、闭环增益
首先我要介绍下上述三种增益在负反馈运放电路中实际所指,开环增益顾名思义就是开环放大器如图1,2电路中运放的小信号增益,此时仅仅代表运放的本身增益特性,高增益运放电路具有较高的性能常常应用于仪表等高精密仪器系统中,如何提高运算放大器开环增益有不同的电路结构和方法可以参考拉扎维书中的增益改善方案;
环路增益是反馈电路单元与放大器开环增益的乘积,由于反馈单元的反馈系数ß通常小于1因此环路增益一般小于运算放大器的开环增益,环路增益根据我们对上一部分负反馈系统描述可以知道主要用来判断运算放大器组成的负反馈系统的稳定性,通常看环路增益的PM是否满足要求进一步判定系统稳定性,因此在仿真过程中需要得到环路增益的小信号幅频特性和相频特性曲线是我们判定系统是否稳定的重要依据;
闭环增益对于我们实际使用过程来说它是实际我们所获得的运放组成的负反馈系统的实际增益,因此组成不同的反馈电路结构我们可以获得不同的运算电路和放大倍数电路,通过观察闭环增益的传输函数(结合负反馈系统中的传输函数)我们可以发现如果放大器的开环增益如果远大于1,整个系统的闭环增益是反馈单元反馈系数的倒数,这也是我们牺牲放大器高增益换取系统高精度放大倍数的目的。接下来我们就要回答上面一开始提到的为什么我们学习运放电路会直接仿真开环运放的PM而不是直接仿真闭环负反馈系统下的运放的PM来判定系统稳定下,难道只要开环运放PM满足大于45度要求,闭环状态下该系统的环路增益的PM也一定会大于45度?带着这个问题我们来看下下面这幅图4:
图4 环路增益、开环增益、闭环增益与相位裕度关系
观察图4(a)我们可以发现其为环路增益幅频特性曲线,其中三个曲线的反馈系
数关系如下
我们可以发现三个曲线与横坐标的交点(增益为1)分别是蓝色曲线>绿色曲线>红色曲线,结合图4(c)可以看出PM3>PM2>PM1,我们可以得出结论反馈系数越大,相位裕度PM越小。如果我们仔细看图4(1)蓝色曲线我们可以发现此时环路增益就是我们运放电路的开环增益,一般反馈单元的反馈系数均是小于1因此我们直接看运放电路开环的相位裕度PM是该运放最差的PM,如果连运放在开环状态下PM都满足大于45度,那我们就可以说该运放组成的负反馈系统(反馈系数小于1)的PM一定满足大于45读的稳定性要求这也就是为什么我们一开始学习时开环放大器不存在稳定性问题,还要仿真开环放大器的相位裕度PM大于45度的原因?这里还有一个问题就是,
我们稳定目标只要负反馈系统的环路增益PM大于45度,而我们因为开环运放的PM已经大于45度,其组成的负反馈系统的相位裕度一定大于45度是否会造成相位裕度的浪费,这一点我想说的是,对于初学者我们可以不关注这些浪费,我们只要了解上述三种增益的关系以及如何判断环路稳定便达到学习要求;对于实际公司和设计使用中,这种裕度浪费带来的是电流的增加带来功耗的浪费,我们都知道目前降低电路功耗成为延长电池寿命的重要目标,也是我们电路设计永恒的话题。
因此在公司和产品的角度我们一般是对固定反馈系数的运放,实际上我们可以回归巴克豪森判据的本质,去得到属于该反馈系数的环路增益响应的幅频特性和相频特性曲线,在闭环的角度仿真电路使其满足PM大于45度的稳定性要求。在判定稳定性方面工业界还有一种闭合速率角度快速判定系统是否稳定,原理图下通过观察运放电路的开环增益和反馈系数的幅频特性曲线交点,此时二者斜率之差的绝对值与20dB大小关系,如果二者之差等于20dB可以判定此时相位裕度的大小45度<PM<90度,如果二者差值在20dB-40dB之间,PM=45度,如果二者差值等于40dB,此时0度<PM<45度,这很好理解因为开环增益曲线的斜率反应表运放主极点的效果,20dB的闭合速率意味着电路只受一个极点的影响,具体可以参照TI的运放稳定性公开课讲解。
- 运算放大器各种指标的仿真
本部分主要介绍运算放大器电路所涉及到的不同指标仿真方法,具体包括静态工作点、小信号增益和相位曲线、CMRR、PSRR、Noise、输入输出阻抗、环路增益和闭环增益等指标仿真。
- 静态工作点Q
我们都知道所有电路建立合理的工作点是所有其他指标设计的第一步,因此设置合理的静态工作点使得运算放大器内部的管子工作在合适的region是我们设计电路最重要的步骤,这可以采用仿真器中的dc进行仿真,并通过标注管子的节点电压和静态参数判定是否满足要求。
- 小信号AC仿真