为了解释函数的本质是什么?有必要知道函数的发展史,通过了解函数的发展历程,我们可以从表面本质彻底的认识函数!
第一个历程,几何观念下的函数1.伽利略是最早透露出函数概念的,只不过当时用的不是函数这个名词,他指出:用文字和比例的语言表达两个量的关系。仅此而已。
2.随后解析几何出现,直角坐标系的发明者笛卡尔在解析几何中注意到:"两个变量之间的关系也一个变量,总是依靠另一个变量而存在"。很遗憾的是,当时大部分函数都被当做曲线来研究,并没有意识到需要提炼出函数这一概念!
3.时间到了1673年,莱布尼茨首次使用"function"表示"幂",后来陆续用function表示曲线上点的坐标或者与曲线有关的量,这个时候"function"的词义应该不被翻译成函数,应该翻译成"功能"(个人观点),但是无论如何,1673年是数学历史上第一次见到"function"一词,是历史性的突破!直到现在,依然都是使用它!
第二个历程,代数观念下的函数1.1718年,伯努力在莱布尼茨的基础上,对函数再次进行了定义:"强调函数需要用公式来表示",到这儿可以看出比较接近我们现代函数了。
2.1756年,伟大数学家欧拉给出定义,一个变量的函数是由这个变量和一些数(即常数),以任何方式组成的解析表达式。可以看出这个概念中解析式对于函数的重要意义被体现出来,比伯努利的定义更普遍,更具有广泛意义。
第三个历程,对应关系下的函数不要着急,很接近本质了!
1.1821年,柯西指出一个函数需要有两个变量,一个是自变量,一个是因变量。此时此刻,函数模型非常类似我们初中学的函数概念!