网络cnn是什么意思,cnn的优点和缺点

首页 > 教育 > 作者:YD1662024-06-20 22:09:52

白交 发自 凹非寺
量子位 报道 | 公众号 QbitAI

看你是人还是物,是猫还是狗。

卷积神经网络(CNN)最重要的用途就是图像分类。说起来,似乎很简单。

为什么不使用普通的神经网络呢?

那是因为在图像分类时,面临着图像大,物体的形态、位置不同等问题,这就给普通的神经网络带来了难题。

而,卷积神经网络就是来解决这个问题。

Facebook软件工程师Victor Zhou这篇入门贴,就介绍了什么是卷积神经网络。

网络cnn是什么意思,cnn的优点和缺点(1)

截至目前,已经有47k访问量了。

网络cnn是什么意思,cnn的优点和缺点(2)

已经对神经网络有所了解的同学,一起来看看吧。

MNIST手写数字分类

首先,就以MNIST手写数字分类为例,这就是MNIST数据集的样本。

网络cnn是什么意思,cnn的优点和缺点(3)

很简单,就是识别图像,然后将其分类为数字。

MNIST数据集中的每个图像均为28×28,我们看到,都是居中的灰度数字。

正常的神经网络其实就可以解决这个问题,首先将每张图像视为28×28=784维向量,将784维送到一个784维的输入层,堆叠几个隐藏层,然后用10个节点的输出层来完成,每个数字1个节点。

但这些数字居中,且图像较小,所以也就没有尺寸大、位置偏移的问题。但是我们知道实际生活中,情况并非如此。

好了,有了一个基本的了解之后,我们就进入了这个卷积神经网络的世界吧。

什么是卷积神经网络?

顾名思义,卷积神经网络就是基本上只是由卷积层组成的神经网络,卷积层是基于卷积的数学运算。

而卷积层是由一组滤波器组成,你可以将其视为二维矩阵的数字。比如,这是一个3×3滤波器。

网络cnn是什么意思,cnn的优点和缺点(4)

首页 12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.