地心经纬度:即以地球椭球体质量中心为基点,地心经度通大地经度λ,地心纬度是指参考椭球面上某点和椭球中心连线与赤道面之间的夹角ψ。
在大地测量学中,常以天文经纬度定义地理坐标。在地图学中,以大地经纬度定义地理坐标。
2.2 我国的大地坐标系统
(1)参心坐标系
我们从参心坐标系和地心坐标系来讲解我国的大地坐标系。
参心坐标系是以参考椭球的集合中心为基准的大地坐标系,通常划分为参心空间直角坐标系(x,y, z),参心大地坐标系(B,L,H)。
我国常用的有1954北京坐标系,1980西安坐标系,新1954北京坐标系。
1)1954北京坐标系
原点在前苏联普尔科沃,参考椭球为克拉索夫斯基椭球,主要参数为:a=6378254米,f=1/298.3
2)1980西安坐标系
原点在陕西省泾阳县永乐镇,参考椭球为国际大地测量与地球物理联合会1975年推荐的椭球,主要参数为:
a=6378140米,地球重力场二阶球谐系数J2=1/298.3,引力常数与地球质量的GM=3.986005×1014m3/s2
地球自转角速度w=7.292115×10-5rad/s
3)新1954北京坐标系
1980西安坐标系基础上,将基于IUGG1975年椭球的1980西安坐标系平差成果整体转换为基于克拉索夫斯基椭球的坐标值,并将1980西安坐标系坐标原点空间平移而建立起来的。
(2)地心坐标系
地心坐标系是以地球质心为原点建立的空间直角坐标系,或以球心与地球质心重合的地球椭球面为基准面所建立的大地坐标系。
我们国家使用的地心坐标系有WGS-84坐标系,2000国家大地坐标系。
1) 原点为地球质心M,Z轴指向BIH1984.0定义的协议地极(CTP),X轴指向XMZ平面,且与Z轴、X轴构成右手坐标系。
2) 2000国家大地坐标系(CGCS2000坐标系)
原点为地球质心M,Z轴指向由原点指向历元2000.0的地球参考极的方向,X轴向由原点指向格林尼治参考子午线与赤道面(历元2000.0)的交点,Y轴与Z轴、X轴构成右手坐标系。
(3) 我国的大地控制网
我国的大地控制网是由平面控制网和高程控制网组成。
由精确测定平面位置和高程的典型的具有控制意义的点组成,它是测制地图的基础。
1) 平面控制网
平面控制网采用平面控制测量确定控制点的平面位置,即大地经度和大地纬度,其主要方法是三角测量和导线测量。目前提供使用的国家平面控制网含三角点、导线点154348个,构成1954北京坐标系统、1980西安坐标系两套系统。
2) 高程控制网
由精准测定了高程的地面点组成的控制网,是测定其他地面点高程的基础。建立高程控制网的目的是为了精准求算绝对高程,即高程。中国高程起算面是黄海平均海水面,是根据验潮站确定的多年平均海水面确定的。
我国采用的高程系有两种:1956年黄海高程系和1985年国家高程基准。
1956年黄海高程系,是1956年在青岛观象山设立的水准原点,取1950-1956年共7年的验潮资料,水准原点高程为72.2893米。
1985国家高程标准:取1952年—1979年共28年的验潮资料,水准原点高程为72.2604米。比黄海平均海水面上升了29毫米。1987年国家测绘局公布启用《1985国家高程标准》取代《黄海平均海水面》。
3、 地图投影
3.1 地图投影概述
3.1.1 地图投影的基本问题
地球表面是不可展开的曲面,而地图必须是一个平面,因此将地球表面展开成地图平面必然会产生裂隙或褶皱,必须采用一定的数学方法将曲面展成平面,而且使其变形较小,这种数学方法,成为地图投影。
3.1.2 地图投影的变形
地图投影的变形,通常可以分为长度、面积和角度三种。其中,长度变形是其他变形的基础。
3.1.3 地图投影的分类
地图投影的分类方法很多,总的来说基本可以以外在的特征和内在的性质进行分类。
变形分类:
等角投影:地球表面上无穷小图形投影后仍保持相似,或两微分线段所组成的角度投影后仍保持相似或不变(又称之为正形投影)。
等面积投影:地球表面上的图形在投影前后面积保持不变;
任意投影:既不具备等角性质,又没有等面积性质的投影,统称为任意投影。
等距离投影:在任意投影中,如果沿某一方向的长度比等于1,即a=1或b=1,则这种投影称为等距离投影。