理想L9前轴“五合一”动力系统
根据基础物理知识,在能量转化过程中势必产生一定的消耗,而在整个增程系统中,至少涉及两次能量转换(化学能-电能-动能),所以增程的能量效率相对更低。
在燃油车蓬勃发展的年代,传统车企一心扑在开发燃油效率更高的发动机和传动效率更高的变速箱之上。当时哪家能将发动机热效率提升1%,甚至都能接近诺贝尔奖。
所以,增程这种不仅不能提升,反而降低能量效率的动力结构,也就被一众车企们抛在脑后,置之不理。
丰田Dynamic Force系列发动机热效率可达40%
其次,除了能量效率低之外,电机和电池也是限制增程发展的两大原因。
在增程系统中,电机是车辆动力的唯一来源,但在20~30年前,车用驱动电机技术并不成熟,且成本较高,体积也相对较大,动力也无法单独驱动车辆。
而电池当时的处境与电机类似,无论是能量密度还是单体容量,都无法与现在的电池技术相提并论,想要容量大就需要更大的体积,也就带来更贵的成本和更重的车重。
试想一下,如果在30年前,按照理想ONE的三电指标来组装一辆增程车,成本直接原地起飞。
理想ONE
但增程是完全由电机驱动,而电机又拥有无扭矩迟滞、安静等优点。所以,增程在乘用车领域普及之前,更多是应用在像坦克、巨型矿车、潜艇等对于成本和体积并不敏感,对于动力、安静、瞬时扭矩等有较高要求的车船之上。
总结来看,魏牌和大众的CEO说增程是一种落后技术并非没有道理。在燃油车蓬勃发展的时代,成本更贵、效率更低的增程确实是一种落后技术。而大众和长城(魏牌)也正是两个在燃油时代成长起来的传统品牌。
时间来到现在,虽然从原理上说,现在的增程技术和一百多年前的增程技术并没有发生质的变化,依然还是增程器发电,电机驱动汽车,依然可以叫它“落后技术”。
但是,在一个世纪之后,增程技术终于等来了电机、电池技术的飞速发展,原来的两个拖油瓶,已经成为其最重要的竞争力,抹平增程在燃油时代的劣势,开始反噬燃油市场。
三、城区工况选增程 高速工况选插混
对于消费者来说,他们其实并不在乎增程是不是落后技术,而是在乎增程和插混哪个更省油,哪个开起来更舒服。
上文提到,增程是一种串联结构,增程器不能直驱车辆,所有动力均来源于电机。
所以,这也就让采用增程系统的车辆拥有跟纯电车类似的驾驶感受和行驶特点。而在电耗方面,增程也与纯电类似——城市工况电耗低、高速工况电耗高。
具体来说,由于增程器只为电池充电或为电机供电,所以增程器多数时间都可以维持在一个比较经济的转速区间,甚至在纯电优先模式(率先消耗电池的电量)下,增程器甚至可以不启动,也就不产生油耗。而燃油车的发动机无法一直固定在一个转速区间运转,需要超车加速就要提高转速,堵车就会长时间怠速。
理想ONE
所以在正常驾驶的情况下,增程在城市低速路况的能耗(油耗)普遍要低于搭载同排量发动机的燃油车。
但是,增程跟纯电一样,高速工况下的能耗高于低速工况;而燃油车却恰恰相反,高速工况的能耗要低于城市工况。
这也就代表在高速工况下,电机的能耗更高,电池电量也就会更快地被消耗,增程器就需要长时间“满负荷”工作。并且,由于电池包的存在,同等尺寸的增程车的车重普遍大于燃油车。
而燃油车得益于变速箱的存在,在高速工况下,车辆可以升至较高档位,让发动机处于经济转速,能耗也就相对更低。
所以普遍来说,增程在高速工况下的能耗与同排量发动机的燃油车型几乎相同,甚至更高。