VPT 方法
互联网包含大量可供我们学习的公开视频,例如游戏玩家演示游戏玩法,《我的世界》玩家建造一个错综复杂的房子。然而这些视频只提供了事情发生的记录,而不是确切的实现方式,即没有说明鼠标移动和按键的确切顺序。
相比于 OpenAI 的大型语言模型,要在视频游戏等更通用领域构建大型基础模型(foundation model),缺乏动作标签带来了新的挑战。
为了利用互联网上可用的大量未标记视频数据,该研究提出了一种新颖但简单的半监督模仿学习方法:视频预训练(VPT)。
该研究首先从游戏商家那里收集了一个小型数据集,其中不仅记录了玩游戏的视频,还记录了玩家采取的行动,即按键和鼠标的移动。利用这些数据,该研究训练了一个逆动力学模型 (IDM),以预测视频中每个步骤所采取的动作。重要的是,IDM 可以使用过去和未来的信息来猜测每一步动作。与仅给定过去视频帧预测动作的行为克隆任务相比,这种任务要容易得多,需要的数据也要少得多。然后该研究使用经过训练的 IDM 来标记更大的在线视频数据集,并通过行为克隆来学习行动。
下图为 VPT 方法概览:
VPT 零样本结果
该研究选择《我的世界》这个游戏中验证了所提方法,因为它 (1) 是世界上最流行的视频游戏之一,拥有大量可免费获得的视频数据,并且 (2) 是开放式的,可以提供各种各样的行为动作,类似于现实世界的应用程序(如计算机使用)。与之前的工作在《我的世界》中使用简化动作空间不同,OpenAI 的新模型使用更普遍适用、难度也更大的原生人机界面:鼠标和键盘使用 20Hz 帧率。
该研究的行为克隆模型(VPT 基础模型)使用 70000 小时的 IDM 标记在线视频进行训练,在《我的世界 》中完成了强化学习几乎不可能实现的任务。新模型学会了砍树收集原木,将原木制作成木板,然后将木板制作成箱子;这个行为序列对于《我的世界》高级玩家在约 50 秒内执行 1000 个连续的游戏动作。
《我的世界》制作箱子过程中每一步所需的动作数目和时间。
零样本模型制作箱子的过程。
此外,该模型还可以执行人类在游戏中经常执行的其他复杂技能,例如游泳、狩猎动物、食用食物以及一些《我的世界》专用技能。