如何确定近似数的有效数字,近似数保留三个有效数字

首页 > 经验 > 作者:YD1662022-11-04 08:28:51

的形式,其中1≤|a|<10,n是负整数。

二、近似数和有效数字:

1、近似数:

利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。

2、有效数字:

对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个近似数的有效数字。

第四章 概率

如何确定近似数的有效数字,近似数保留三个有效数字(13)

一、事件发生的可能性:

人们通常用1(或100)来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性。

二、游戏是否公平:

游戏对双方公平是指双方获胜的可能性相同。

三、摸到红球的概率:

1、概率的意义

P(摸到红球)=摸到红球可能出现的结果数/摸出一球可能出现的结果数

2、确定事件和不确定事件的概率:

(1)必然事件发生的概率为1记作P(必然事件)=1;

(2)不可能事件发生的概率为0,P(不可能事件)=0;

(3)如果A为不确定事件 ,那么0<P(A)<1。

3、概率的求法:

一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m个结果,那么事件A发生的概率为P(A)=m/n。

第五章 三角形

如何确定近似数的有效数字,近似数保留三个有效数字(14)

一、三角形及其有关概念:

1、三角形:

由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

2、三角形的表示:

三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”。

3、三角形的三边关系:

(1)三角形的两边之和大于第三边。

(2)三角形的两边之差小于第三边。

(3)作用:

①判断三条已知线段能否组成三角形

②当已知两边时,可确定第三边的范围。

③证明线段不等关系。

4、三角形的内角的关系:

(1)三角形三个内角和等于180°。

(2)直角三角形的两个锐角互余。

5、三角形的稳定性:

三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。

6、三角形的分类:

(1)三角形按边分类:

不等边三角形、等边三角形、等腰三角形

(2)三角形按角分类:

锐角三角形、直角三角形、钝角三角形

把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。

7、角形的三种重要线段:

(1)三角形的角平分线:

定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

性质:三角形的三条角平分线交于一点。交点在三角形的内部。

(2)三角形的中线:

定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。性质:三角形的三条中线交于一点,交点在三角形的内部。

(3)三角形的高线:

定义:从三角形一个顶点向它的对边所在直线作垂线,顶

点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

性质:三角形的三条高所在的直线交于一点。

锐角三角形的三条高线的交点在它的内部;

直角三角形的三条高线的交点是它的斜边的中点;

钝角三角形的三条高所在的直线的交点在它的外部

如何确定近似数的有效数字,近似数保留三个有效数字(15)

8、三角形的面积:

如何确定近似数的有效数字,近似数保留三个有效数字(16)

上一页12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.