如何确定近似数的有效数字,近似数保留三个有效数字

首页 > 经验 > 作者:YD1662022-11-04 08:28:51

二、全等图形:

定义:能够完全重合的两个图形叫做全等图形。

性质:全等图形的形状和大小都相同。

三、全等三角形:

1、全等三角形及有关概念:

能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

2、全等三角形的表示:

全等用符号“≌”表示,读作“全等于”。如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。

注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。

3、全等三角形的性质:

全等三角形的对应边相等,对应角相等。

4、三角形全等的判定:

(1)边边边:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。

(2)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)

(3)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)

(4)边角边:两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)

直角三角形全等的判定:

对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)。

第六章 变量之间的关系

如何确定近似数的有效数字,近似数保留三个有效数字(17)

1、变量、自变量、因变量:

(1)在某一变化过程中,不断变化的量叫做变量。

(2)如果一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量。

(3)自变量与因变量的确定:

①自变量是先发生变化的量;因变量是后发生变化的量。

②自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量。③利用具体情境来体会两者的依存关系。

2、函数的三种表示法:

(1)关系式法

(2)列表法

(3)图像法

三种变量之间关系的表达方法与特点:

如何确定近似数的有效数字,近似数保留三个有效数字(18)

第七章 生活中的轴对称

如何确定近似数的有效数字,近似数保留三个有效数字(19)

一、轴对称:

1、轴对称图形:

如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

2、轴对称:

对于两个图形,如果沿一条直线对折后,它们能够完全重合,那么称这两个图形成轴 对称,这条直线就是对称轴。

3、性质:

(1)对应点所连的线段被对称轴垂直平分。

(2)对应线段相等,对应角相等。

二、角平分线的性质:

角平分线上的点到这个角的两边的距离相等。

三、线段的垂直平分线(简称中垂线):

定义:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。性质:线段垂直平分线上的点到这条线段两个端点的距离相等。

四、等腰三角形:

1、等腰三角形:

有两条边相等的三角形叫做等腰三角形。

2、等腰三角形的性质:

(1)等腰三角形的两个底角相等

(2)等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),

(3)等腰三角形是轴对称图形,等腰三角形顶角的平分线、底边上的中线、底边上的高它们所在的直线都是等腰三角形的对称轴。

3、等腰三角形的判定:

(1)有两条边相等的三角形是等腰三角形。

(2)如果一个三角形有两个角相等,那么它们所对的边也相等

五、等边三角形:

1、等边三角形:

三边都相等的三角形叫做等边三角形。

2、等边三角形的性质:

(1)具有等腰三角形的所有性质。

(2)等边三角形的各个角都相等,并且每个角都等于60°。

3、等边三角形的判定:

(1)三边都相等的三角形是等边三角形。

(2)三个角都相等的三角形是等边三角形。

(3)有一个角是60°的等腰三角形是等边三角形。

如何确定近似数的有效数字,近似数保留三个有效数字(20)

上一页12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.